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AN INVESTIGATION OF KARMARKAR'S ALGORITHM
FOR LINEAR PROGRAMMING

SUMMARY FINAL REPORT

1.0 INTRODUCTION

1.1 SCOPE

This report summarizes the research on potential extensions and applications of
the Karmarkar linear programming concept that was conducted by Decision-Science
Applications, Inc. (DSA) for the Office of Naval Research (ONR) under Contract
N00014-85-C-0254. The DSA research effort was initiated, with corporate funds,
immediately after the publication of the original Karmarkar results, and has been
continued with support provided by the Office of Naval Research under the above
contract.

1.2 BACKGROUND AND OBJECTIVES

The testing and assessment of the Karmarkar algorithm by the mathematical
community has made it clear both that the algorithm has a great deal of promise, and
that the Karmarkar methods will require substantial additional development if they are
to displace the simplex method as a standard technique for solving large-scale linear
programming problems. As a result, considerable attention is being given to the
development of more efficient methods for accomplishing the large matrix inversion
operation which accounts for the bulk of the computational effort within the Karmarkar
algorithm.

The present research effort has been focused somewhat differently on the
possibilities for synergy between the Karmarkar concepts and the iterative Lagrangian
optimization methods for large scale non-linear applications, which have been a DSA
specialty. One remarkable aspect of the Karmarkar algorithm is that it defines an
iterative computational approach for linear optimization that is similar in many ways to
the iterative methods that are used in large-scale non-linear optimization applications.
Thus, it seemed likely that the potential synergy between these two sets of optimization
concepts could lead to new developments that might be more broadly applicable in the
general field of mathematical optimization.

For this reason, the first objective of the DSA research effort has been to
identify and clarify the essential computational principles that underlie the Karmarkar
algorithm--with the objective of making them available as general purpose mathematical
tools that can be more widely applied to mathematical programming problems outside
the specific context of the Karmarkar algorithm.

The second objective of the DSA research has been to search for possible
alternatives to the Karmarkar linear programming algorithm that might preserve its main
computational advantages while avoiding entirely the computationally inefficient matrix
inversion process.

We believe that substantial progress has been made with regard to both of the
above objectives.
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1.3 SYNOPSIS OF PUBLISHABLE R7SEARCH FINDINGS

Analysis of Computational Principles

The DSA research has shown that the Karmarkar algorithm is mathematically
equivalent to a simple steepest descent algorithm--in which "distance" is defined in terms
of a logarithmic distance metric defined over the original problem variables, and in
which the actual objective function is replaced by a surrogate objective function which
includes a penalty function that facilitates boundary avoidance.

These basic findings are reported in A Functional Analysis of the Karmarkar
Linear Programming Algorithm, George E. Pugh, DSA Report #676, March 31, 1986
(ref. 3.). This document, which is being transmitted with this final report, is also being
distributed to the attendees at the ONR Monterey Conference (February 20-21, 1986) on
the Karmarkar algorithm. It is expected that the main findings of the report will be
prepared for publication in a mathematical journal.

Non-Matrix Inversion Alternatives

The development of alternative versions of the Karmarkar algorithm that can
operate without matrix inversion appears to require two important departures from the
basic Karmarkar algorithm. First, the basic algorithm must be restructured into a form
that is less sensitive to inaccuracies in the calculated direction of steepest descent, so that
approximation methods can be used in place of an exact matrix inversion. Second,
computationally efficient and reliable methods for estimating the direction of steepest
descent without matrix inversion must be developed.

A promising approximation method which was developed for estimating the
direction of steepest descent without matrix inversion is described in another draft paper
by John Danskin, "A Geometric Algorithm for Approximate Steepest Ascent with Linear
Constraints," which is included as Enclosure A to this report.

One very promising approach which was developed to reduce the requirement
for precision in the estimated direction of steepest descent is described in a draft paper
by John Danskin, "A Variant of Karmarkar's Linear Programming Algorithm not
Requiring Projection onto the Null Space," which is included as Enclosure B to this
report.

1.4 OTHER RESEARCH FINDINGS.

As is usually the case in any exploratory research effort, the publishable
material represents only a small percentage of the total effort, and some of the most
interesting findings have not yet reached a point of development that would justify
formal publication. The remainder of this report provides a broad overview of the
research effort, and outlines some of the new insights which will need to be pursued in
a continuation of the research effort.

I
I
!
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2.0 TECHNICAL PROBLEMS WITH THE KARMARKAR ALGORITHM

About two years ago, Narendra Karmarkar proposed a radical new method for
solving linear programming problems. The method involved the use of a projective
transformation to map the space in which the problem was originally defined onto a
simplex, in such a way that the current position point is mapped into the barycenter.

This method caused a sensation in the linear and non-linear programming
communities. It seemed to be extremely fast on some problems, but extremely slow on
others. There were difficult technical questions as to how to achieve feasibility and how
to efficiently carry out the unfamiliar matrix ii 'ersion that Karmarkar requires; and
questions as to the adequacy of the proof of convergence. But it is unquestionable that
Karmarkar's basic idea is one of great power.

The main difficulty with the algorithm has been with the calculation of a
direction of steepest descent within the simplex, which is required for each move. To
accomplish this, Karmarker projects the objective vector into the "null space" defined by
the constraints and the simplex equation. He accomplishes this projection algebraically
by inverting a matrix.

There are many difficulties in inverting large matrices. J.A. Tomlin in "An
Experimental Approach to Karmarkar's Projective Method for Linear Programming,"
which is included as Enclosure C, writes of problems encountered with Karmarkar's
matrices. Their "condition" worsens as the iteration proceeds; also, any known inversion
technique will decrease the sparsity of the matrix.

There are other problems. Computational inverses are always imperfect, and
the Karmarkar algorithm is sensitive to computational inaccuracies. Without an exact
inverse, the position vector will wander away from feasibility. Another difficulty is that
of achieving an initial feasible point in the form Karmarkar wants it, with all the
coordinates positive.

Finally, the Karmarkar proof of convergence hinges fundamentally on knowing
the value of the function at the optimum. Karmarkar dealt with this problem in his
original Bell Laboratory paper (ref. 1.) by using a rather awkward procedure to estimate
the optimum value as the algorithm progressed. But he offered no proof of convergence
for this procedure. In his revised paper in Combinatorica (ref. 2.), he solves the
problem by using a combined primal-dual problem definition in which the value of the
combined objective function at the solution point can be guaranteed to be zero. This
approach provides a nice solution for the proof of convergence at the expense of using a
much larger matrix in the computational process.

. . .. . . . ........... .. . .. . . . ... ., .... . . . . . . |.. . . ..
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3.0 OVERVIEW OF DSA RESEARCH EFFORT

3.1 SPECIFIC RESEARCH OBJECTIVES

The DSA effort focused on two major objectives.

The first objective was to develop an improved understanding of the practical
computational concepts that account for the performance of the Karmarkar algorithm--
so that the concepts could be effectively utilized in the field of mathematical
optimization outside the context of Karmarkar's specific algorithm. This objective has
been essentially achieved, and the results are reported in DSA Report #676 (ref. 3).

The second objective was concerned with the development and study of
possible variants of the Karmarkar algorithm, with the objective of improving the speed
and reliability of the algorithm. This part of the DSA effort had several specific
objectives. These included the development of:

* Approximate computational methods for finding steepest ascent that could
be more efficient than matrix inversion, particularly because many such
methods preserve matrix sparseness.

0 Alternative algorithms for utilizing the Karmarkar steepest descent
concept that are more tolerant of computational inaccuracy and departures
from the precise null space than the original Karmarkar formulation.

0 Alternative transformations of the original problem for accomplishing the
same functional objective as the Karmarkar projection, but that are
mathematically simpler and possibly computationall: iore efficient.

3.2 THE RESEARCH TEAM

To facilitate interactions between the new Karmarkar concepts and earlier
iterative techniques developed for non-linear programming problems, DSA brought
together a combination of theoretical and applied mathematical experience.

John M. Danskin, who is known for his extensive contributions to mathematical
optimization and game theory, has served as the theoretical mathematician for the
project. He was responsible for the original theoretical insights concerning the
Karmarkar algorithm that led DSA to initiate the project, and he has contributed a
substantial fraction of the theoretical concepts that have been investigated. In addition
to his theoretical contributions, Danskin has also developed numerous Fortran programs
on an IBM PC that he has used to test some of his theoretical concepts.

Most of the applied research for the project, including computer validation and
large-scale testirg of algorithms, has been conducted by Fred Miercort, who has more
than 20 years of experience in applied mathematics and optimization methods. Miercort
was responsible for most of the initial testing of variants of the Karmarkar concept that
provided the foundation for a more theoretical functional understanding of the
algorithm.

The project was supervised by George F. Pugh, who has many years of
practical experience in solving very large non-linear optimization problems. In addition

.. .. . .. .... .... .... J ......... .. . . .l l t.. ...A
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to his role as supervisor for the project, Pugh was also responsible for developing the
functional understanding of the algorithm as reflected in DSA Report #676 (ref. 3).

MAI



DSA Report No. 7o-
page - 6

4.0 SUMMARY OF RESEARCH BY JOHN M. DANSKIN

4.1 EARLY RESEARCH CONTRIBUTIONS

Because of the promise of the Karmarkar approach and the numerous problems
with the current Karmarkar formulation, Danskin began in November 1984 to seek
methods for avoiding the exact-inverse, destruction of sparseness, and feasibility
problems. He interested DSA in a joint research program on the topic, and continued
with his investigations. Danskin made a number of very important early contributions to
the research effort.

* He provided a detailed assessment and interpretation of the Karmarkar
concept that provided the foundation for much of tho DSA effort.

* He suggested the use of the Lemke closest point principle as a -Vay of
converting the calculation of a direction of steepest ascent into a
quadratic distance minimization problem.

* He developed a number of approximate methods for solving the quadratic
minimization problem, including a method of "maximum scoop" that has
performed as well as, or better than, any other method that was tested by
Miercort.

* He has explored several ways of utilizing primal-dual relationships to
restructure standard LP problems so as to avoid some of the theoretical
and computational problems of the Karmarkar approach.

4.2 PRESENT DANSKIN APPROACH

By June 1985, Danskin, after numerous excursions, arrived at a "balanced
reduction of deficits" approach which seems particularly promising. In this approach,
which is explained in sections 4 and 5 of Enclosure B, he uses the Karmarkar simplex
and projective transformations, but otherwise departs radically from Karmarkar.

The approach never requires a feasible point. It starts, instead, with an
arbitrary positive primal, dual pair (X,Y) which satisfies the "connecting equation"
C • X = B ' Y, but which is otherwise infeasible relative to many of the primal and dual
inequality requirements.

The magnitude of the infeasibilities, measured positively, are referred to as
"deficits." It may happen that the "deficits" corresponding to some of the inequalities are
negative. Additive "slack" variables, somewhat analogous to the slack variables of the
simplex method, are then introduced so as to make all the deficits positive and equal.

Starting with the deficits all equal, a new dummy variable, W, is introduced
which is equal to them. The algorithm then seeks to find a way down for all the
deficits which keeps them all approximately equal. On succeeding moves, any small
deviations from the equality balance are partially corrected in such a way that, as W
decreases towards zero, the deficits continue to remain within 25% of W. At no point is
extreme accuracy required.

.... IN MA., i
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The method never requires a feasible point, and it obviates the need for an
accurate projection. In a certain technical sense, the method is "projecting," but not in
Karmarkar's sense.

The key to the success of such an approach, of course, lies in the availability of
a computationally efficient method for estimating a direction that will maintain an
approximate balance of the deficits during the convergence process. At the time the
paper in Enclosure B was written, Danskin was using a new geometric (rather than
algebraic) algorithm for steepest ascent, subject to equality constraints, which is included
here as Enclosure A.

This algorithm works by always having a rate of ascent greater than the
steepest constrained rate, and by gradually reducing the violations of the constraints.
When this steepest ascent method is applied to the balanced reduction algorithm,
directions are accepted as good even if the balanced reduction of constraints is violated
by some moderate amount such as 25%. The resulting error is corrected in the next
move.

More recently, Danskin has developed an approach which seems to perform
much more efficiently, which is based on the application of a game solution concept
which Danskin identifies as a "stack game." Regardless of what method is used to
estimate a direction of balanced reduction, the method has the major advantage that it
requires no operations at all on the matrix other than row multiplications and, thus, it
completely preserves the sparsity of the matrix.

The two papers discussed above have been written under the current ONR
contract. The corresponding computer programs, with some of the more recent
techniques for estimating the move direction, have been used to solve linear
programming problems with several thousand non-zero entries on an IBM personal
computer--one that is not even equipped with hardware floating point capability.

4.3 A FAST POLYNOMIAL METHOD FOR REDUCING THE DEFICITS

Subsequent to the completion of the work on this contract Danskin has found a
new method for finding a direction which drives the deficits down at exactly the same
rate. The method takes at most q - 1 steps, where q is the number of constraints.
Each step requires pqE multiplications, where E is the density of the non-zero
elements. The method is an outgrowth of the approach given in section 2 of Enclosure
B, but differs in the methods of solution defined thereafter.

It has now been incorporated in a running LP routine which has been
developed on DSA's and Danskin's own time. An early version is included as
Enclosure D. At the time that this draft was written, Danskin had not yet discovered
that it is not necessary, in forming a direction for a move, to subtact off the projections
on all the previous directions. One need only subtract off the projection on the last
previous move. This discovery eliminated a factor of q/2, the required number of
multiplications, and is the basis for the possibility that the new method will be really
competit:ve in practice.

amk. m m .-.-- n&A
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4.4 OTHER DANSKIN RESEARCH

Danskin has recently begun work on the application of these concepts to
quadratic programming. He hopes to apply the balanced-reduction-of-deficits method
to provide an iterative method for the solution of large quadratic programming problems.
He has found a theorem which appears, after checking with leading experts, to be new,
on "pseudo-duality," which makes it possible to convert a quadratic programming
problem with linear constraints into a form that can be addressed by methods very
similar to those outlined above.

I&
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5.0 EXPLORATORY RESEARCH BY MIERCORT AND PUGH

This exploratory research has focused on four major topics.

5.1 SIMPLIFICATION OF KARMARKAR TRANSFORMATION

The transformation Karmarkar uses to map the original LP problem onto a
simplex would be linear except for his use of a denominator that makes the
transformation non-linear. The presence of the denominator seems to introduce many
complications into the algorithm. For example, it appears to be an important factor in
motivating Karmarkar to work with a complicated surrogate objective function.

From an analysis of the effects of the distance metric on the direction of the
Karmarkar moves, Pugh became convinced that Karmarkar's denominator (which was
necessary for his proof of convergence) is not essential to the operation of the algorithm.
To test this conjecture, Miercort developed and tested a simplified algorithm which does
not use a surrogate objective function, and which omits the denominator from all
calculations.

Although no implementation of the full Karmarkar algorithm was available at
that time with which we could make direct comparisons, the operation of the simplified
algorithm seemed indistinguishable from what had been reported by other investigators
using the full Karmarkar transformation. About the same number of moves were
required to achieve convergence on comparable problems. The trade-off between the
number of moves and the size of a move was the same as reported by other
investigators, and the same types of problems were encountered with the matrix
inversions required to solve the steepest ascent sub-problem. We learned from the ONR
Monterey meeting that we had not been alone in this approach. One speaker there listed
more than a dozen similar "affine transformation" approaches.

Subsequent research (ref. 3) has shown that the omission of the surrogate
objective function does somewhat reduce the efficiency of the Karmarkar algorithm.
But the differences in the performance were too small to be apparent at that time
without a direct side-by-side comparison. The subsequent research has also suggested,
however, that the use of the simplified distance metric without the denominator may
actually be somewhat more efficient than the full Karmarkar distance metric.

5.2 A TEST BED TO INVESTIGATE COMPUTATIONAL ACCURACY
PROBLEMS

DSA's experimental work with various forms of this simplified algorithm
focused on number of test problems, ranging from only a few variables to several
hundred. Tests were made using both sparse matrices, that are characteristic of most
commercial linear programming, and dense matrices that are common in game theory
optimization problems.

Since the basic Karmarkar approach involves an iterative computational
algorithm, one might reasonably expect that it would be self-correcting and tolerant of
computational inaccuracy. Indeed, Karmarkar himself, in his original paper, made just
such a claim. But the experience of all other investigators has been that very high
precision is required in the matrix inversion to avoid drifting away from the feasible

. ../ - w . ,m m m m mm ml mm m-
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null space in a succession of the prescribed Karmarkar moves. Moreover, such drift is
not self-correcting in the basic algorithm, and the difficulty becomes more severe as the
algorithm approaches the solution point.

To facilitate an investigation of problems in computational accuracy, the "test-
bed algorithm" was designed so that iterative approximate methods could be used
interchangeably with the more standard matrix inversion methods. Moreover, the test-
bed was so structured that the performance of each iterative method could be measured
relative to the more accurate matrix inversion results.

Two basic types of test problems were used in the analysis. With the
cooperation of KETRON Inc., a company that is very active in commercial linear
programming, several typical test problems have been obtained, ranging from about 10
to about 300 variables. Like most commercial linear programming problems, they tend
to be quite sparse. But they are also problems that include pitfalls that can be
troublesome for simple linear programming codes. The second basic type of problem
arises in the solution of game theory problems. We have concentrated particularly on the
so-called "cookie-cutter" game, whose matrix is generally quite dense. The formulation
of this game allows an easy selection of a wide variety of problems of varying size
whose solution is very non-trivial.

5.3 EVALUATION OF ALTERNATIVE ITERATIVE ALGORITHMS

We have since assessed the performance of a wide variety of iterative
algorithms. So far, none of the methods tested has performed well enough to be a
serious competitor to the matrix inversion method, except perhaps on problems much
larger than those we have used in the experimental work.

Almost all of the iterative methods that have been tested utilize versions of the
Lemke principle, which converts the steepest ascent problem into a quadratic distance
minimization problem. This method tries to find that linear combination of the
constraint vectors which most accurately approximates the objective function. The
vector coefficients that are produced in this way are analogous to the Lagrange
multipliers that are encountered in non-linear programming problems. As the algorithm
approaches the solution point, these variables converge to the values of the dual
variables.

The methods explored include:

1. Well-known heuristic methods, due to Hugh Everett, that are used to
adjust the Lagrange multipliers for non-linear programming problems;'

2. A simple steepest descent algorithm;

3. Various steepest descent algorithms, altered to include heuristic learning
mechanisms;

The" heuristic methods simply raise a multiplier by some factor, 1+ a, if the constraint is violated in an

unconstrained Lagrange optimisation, and lower it by a comparable factor, 1- 0 , if the constraint is slack. The
factors, a and 0 , by which a given multiplier is adjusted are arbitrarily increased when successive adjustments are
in the same direction and are is decreased when a reversal of direction occurs.

fWA
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4. A steepest quadratic descent algorithm developed by John Danskin, which
uses a curved (i.e., quadratic) trajectory to correct for the first order
changes in the direction of steepest descent; and

5. A "maximum scoop" minimization algorithm (also developed by Danskin),
which uses a steepest descent method, in the space of directions, to search
for a direction vector with the lowest trajectory minimum.

Most of these algorithms have also been tested on renormalized representations of the
linear programming problem (in which the units of the constraints and the activities
have been modified to provide a natural distance metric for defining a direction of
steepest descent).

We have not had the resources under this contract to test some of Danskin's
more recent direction-finding algorithms, such as the algorithm described in Enclosure
A or his newest algorithm, which has generated exceptionally good performance on an
IBM PC. This newest algorithm, which looks promising, utilizes a two-level scoop
method in combination with the "stack game" optimization concept.

With the possible exception of the most recent "double scoop" concept, none of
the above algorithms has yielded the uniformly reliable performance on all of the test
problems that would be desirable in a standardized optimization program. However, the
basic structure of the direction- finding problem is sufficiently predictable to justify the
expectation that a very satisfactory iterative method can be identified that can be
efficiently used in combination with an alternative formulation of the Karmarkar
algorithm, and that is less sensitive to inaccuracies in the direction-finding process.
Clearly, additional research on this topic is badly needed.

In this connection, we note that, as this report is being prepared, Danskin has
found a polynomial algorithm for an "exact way down" without matrix inversion. We
are, however, submitting this report before that algorithm, found on "own time," has
been tested.

5.4 METHODS TO REDUCE VULNERABILITY TO COMPUTATIONAL
INACCURACIES

This section discusses some of our approaches intended to reduce the
vulnerability of the Karmarkar approach to computational inaccuracies.

Advance Solution of Eauality Constraints. The difficulty of finding move
directions that can preserve feasibility is greatly exacerbated by the presence of equality
constraints. In commercial linear programming codes, it has become common practice to
eliminate the equality constraints by solving the equations in advance. When any
variables associated with equality constraints are eliminated, one may of course need to
introduce additional inequality constraints to confine the solution space to regions where
the eliminated variables have positive values.

From our preliminary tests, it appears that such a removal of the equality
constraints may be even more important for a Karmarkar type of algorithm than it is for
the standard simplex methodology. Thus it may be appropriate to begin by converting
any LP problem into a canonical form, from which the original equality constraints have
all been removed, before applying a Karmarkar-like optimization algorithm.

fMA
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(Of course, the Karmarkar methodology requires the introduction of slack
variables so that all inequalities are ultimately converted into equalities. However, the
slack type of inequalities are computationally less troublesome, because each one is
directly related to an inequality constraint--and the Karmarkar solution process takes
place in a feasible region where these constraints are not rigidly binding.)

Infeasibility Penalty Functions. The use of penalty functions that can be added
to the LP objective function, to encourage moves that tend to remove accumulated
feasibility errors, is one possible approach for minimizing the vulnerability of the

Karmarkar method to computational inaccuracies.

In this connection, we have examined two basic strategies. In one, the moves
alternate between those driven solely by the feasibility consideration and those driven
solely by the optimality objective. In the other, both considerations are combined in
each of the moves. Both methods seem to work, but neither has shown a clear
superiority.

A Primal-Dual Bootstrao Method. Experience with approximate solution
methods for the Karmarkar algorithm has shown that, in many cases, the dual variables
(that are a by-product of the solution of the steepest ascent sub-problem) seem to
converge much more rapidly toward a solution than do the primal variables. This
suggested an approach in which both the primal and dual representations of a problem
are simultaneously solved, so that the dual variables that are calculated for each
representation can be used (in what we have labeled a "bootstrap" move) to update the
primal variables for the other representation. This approach has proved to be
spectacularly successful in many cases. It not only moves rapidly toward optimality, but
also corrects most of the accumulated feasibility errors. But in other cases, the method
totally fails to converge.

We are trying to understand the reasons for the unpredictability of the method,
and to develop indicators that can be used to determine when a "bootstrap" move is
likely to be superior to a Karmarkar move.

Assessment of Alternatives. The alternatives noted above for maintaining exact
or approximate feasibility within the Karmarkar algorithm will ultimately have to be
evaluated in competition with techniques such as the Danskin reduction of deficits
method- -techniques which do not require feasibility in the computation phase, and
which only approach feasibility in the final stages of the solution process.

Based on our work to date, we feel the advance solution of equality constraints
is the most promising we have tried. The use of a feasibility penalty function remains
an interesting option, while the boot-strap method appears to be fundamentally flawed.

n MA
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6.0 FUTURE RESEARCH OBJECTIVES

This section summarizes research objectives for the immediate future.

a Convergence Proof for Simplified Distance Metric. The analysis in Ref. 3
showed that the Karmarkar method is equivalent to a simple steepest
descent algorithm in which distance is measured in a logarithmic distance
metric defined over the original variables. The analysis suggests that
Karmarkar's convergence proof should be directly applicable to an
alternative algorithm which uses the Karmarkar surrogate objective
function in combination with the logarithmic distance metric--equivalent
to what would be obtained by omitting the Karmarkar denominator. That
this is so remains to be proved.

* Convergence Proof Without Surrogate Function. Computational
experience has shown that remarkably good performance, comparable to
the Karmarkar algorithm on most of our test problems, can be obtained
with a much simpler algorithm which ignores the surrogate objective and
uses a simpler distance metric- -equivalent to omitting the denominator in
the Karmarkar transformation. However, we have as yet no formal proof
of convergence for this process.

* Performance Test of New Danskin Method. The new Danskin method is
still being debugged. As it is being programmed and tested, important
improvements in the method are being made. When these are complete,
the method will need to be tested against alternatives already available.

* Analysis of "Bootstrap" Move, Theoretical analysis is needed to assess the
circumstances under which the "bootstrap" move can be expected to be
successful, and to develop indicators that can be used during computation
to decide when such a move is appropriate.

* Imoroved Ouadratic Minimization, Additional work is badly needed on
the quadratic minimization sub-problem. We believe that this aspect of
the problem is crucial, particularly for very large problems.

0 Quadratic Minimization Methods for Other Problems, The iterative
quadratic minimization methods that are being developed and tested for
use within the Karmarkar algorithm have a wide variety of potential
applications to other practical problems, such as regression analysis, the
optimization of electric power networks, and other quadratic
programming problems. Work is needed to assess the degree to which
such methods might be useful for large-scale problems in these areas.

* Anolication to Non-Linear Proaramming. The Karmarkar concept has
many features that are particularly attractive for non-linear programming
applications. Many of these applications- -in game theory, economics, and
optimal control--now use either linear programming or Lagrange
multiplier optimization methods to soive an optimization sub-problem that
is later adjusted to match non-linear external conditions through an
external iterative loop. In such applications, the linear programming

.....
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I algorithm appears as a sub-routine that is called repeatedly during the
course of the overall optimization, i.e. "inside a DO loop."

In such a system, each successive sub-problem will typically differ only
slightly from the previous one. But the standard simplex methodology
benefits surprisingly little from the availability of an approximately
correct existing solution. For this reason, such systems are sometimes
designed to use iterative Lagrange multiplier methods rather than the
simplex methodology. But because of the iterative nature of the
Karmarkar approach, it should benefit from the availability of an
approximate solution in much the same way as the Lagrange multiplier
methods. Thus, if it provides a reliable method of solution, it might
reasonably be expected to displace the simplex method in many such
applications.
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A GEOMETRIC ALGORITHM FOR APPROXIMATE

STEEPEST ASCENT WITH LINEAR CONSTRAINTS
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ABSTRACT

The paper presents a new method for approximating
to steepest ascent constrained by equalities. The time for
convergence to accuracy e is for a given problem proportional
to tog (l/e) , but the proportionality constant in the estimate
given can be very large. The method also applies to the problem
of minimization of quadratic forms given as sums of squares of
linear forms in all of Euclidean space without boundaries.
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5 1. Introduction

Consider the problem, stated for z, 2, v ER P

Maximize 2.V 1.1)

subject to

l= . ..,,o, = 0. j =. q .2)J

Denote the maximum in (R. )-(l. 2) by v We wiLL

replace this problem by an e-problem, in which we seek, for

a given positive s , either to be told that v< E: or else to be

provided with a y satisfying

a. Y > (I- E)v (. 3)

and

IfY = 1 , l f < E: . j . q (1.4)

We present here an algorithm, geometric in nature, for producing

a solution to the c-problem. It has the disadvantage of not being



exact, but the advantage that it will work on any matrix, and

without affecting its sparsity.

We have a convergence proof, but no speed estimate

in terms of p, q. and e other than that, for a given problem,

the time required to achieve accuracy e is proportional to

log (lf ) . We have tried crude predecessors of this method

on small problems with encouraging results, and are certain

that this will be much faster. We intend, before this paper goes

to press, to have tested the method on large problems. Our

particular application is to a much-modified version of the

Karmarkar linear programming algorithm, in which we can

do with rather large e .

We explain the idea behind the algorithm in §2 . It

comes down to tinding the closest point to the origin on a linear

manifold. In § 3 we describe the algorithm itself. In 4 we

analyze the algorithm and prove that it converges. In §5 we

note an application to the minimization ot a class of quadratic

forms.
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2 2 . The idea of the algorithm

We may suppose that = I. If all of the b. are3

orthogonal to 2 , then obviously y = : solves the problem. If

some of the b. are orthogonal to a and some are not, we

alter those which are by adding a vector 8a, where 6 E (0, e/2):

this will not change any bj.y by as much as e/2 . So from now

on we assume that no bj is orthogonal to a. Put

= = where a. = /( ,b.) . (2.1)

Then z.x j = I for all j. Now denote by the linear rranitold

of combinations

x jX.x whe , I (2.2)

Then : .x = I for all x EZ• Evidently Z does not pass through

the origin.

Suppose we know the point c on !_ closest to the origin.

Put

h = -c/c 2 (2.3)
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If h = 0. then, for any y satisfying (1. 2).

-1Y = (/c )c.y (l/c 2 ) \ x.y =  . (b.,Y) = 0 (2.4)

where the Xc are the coordinates of c. Hence in that case v =0.

Otherwise put

v = hi (l/v)h . (2.5)

Since c is normal to any line in j . then c.(x-c) = 0 for any
2 j c2

x E Z Hence c.x = c on ; in particular c.x c for any j.

Using this. we see that

h.xi = -X. (1ic2 ) c.xj = I _ I = 0 (2.6)

for all j. It follows that y satisfies the constraints (1. 2). Next

suppose that v' satisfies (1.2). Then c.v' =0 . so that

:Z*Y = (:- c/c 2).y' = vv y . (2.7)

This implies that y yields the unique maximum in the problem

(. 1)-(l. Z), and that that maximum is v .

The matter thus comes down to finding the closest point

c, or a good approximation to it. That is what our algorithm does.

IMA



§ 3 The algorithm

We suppose the routine has arrived at a X and

corresponding x satisfying (2. 2) . It first tests to see

whether we have sufficient evidence to assure that v< C.

It does this by calculating

h -x/x 2  (3.1)

with the x at hand rather than with c as at (2. 3) . If

hI , then v< e and the routine terminates. If

Ihl > it forms

y = h/jhi (3. 2)

and tests the inequalities in (1. 4) . with E replaced by E/2 if

the b. has been altered as at the beginning of 62 to assure

nonorthogonality with a . If all of those tests pass. it terminates.

Otherwise it prepares for a move.

That it is not necessary to test (. 3), and that the

above Ihi < - test is correct, is proved at Lemma D in §4



The square of the distance from x to the origin is

X.xj )2 (3.3)

i~l j--l

The partials with respect to the X. are

Q = 2x.x. j I..... q (3.4)

The routine averages the Q-( ), reverses the signs. and

forms the direction numbers

2x.(x - xi) j = I. q , (3.5)

in which x is the barycenter of the xj . It then calculates

q

2[ .( j) )2 ] /2 (3.6)
j=l

Because some of the tests have failed. $ > 0 . It now forms

the direction cosines

7j = (l/,)Zx.(x- x3 ). j =. q (3.7)

in the X-space, moves to the bottom ot the parabola in that

direction, and proceeds.

MA/
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§4 Analysis of the algorithm

The first task of this analysis is to examine the

meaning of the quantity c in (3. 7), which is the steepest

rate of descent relative to the X , as it relates to the

geometry of the x-space.

We will show that a large p guarantees a good move,

and a small 0 indicates that we are near the solution. These

facts, proved as Lemmas B and C. immediately yield the

convergence theorem. Lemma C may fairly be regarded as

difficult.

The second task. very much easier, is to establish

the facts about the tests involving the value which we used in

the algorithm. This we do in Lemma D, after quoting a

principle due to Lemke.
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Put

"I71 = x - x i = .. .q (4.1)

and then

7 = (j ) 2  1/2 (4.2)

We suppose that A > 0 otherwise the problem is trivial.

LEMMA A. Denote by ds and d a the lengths of the same

infinitesimal segment on Z , measured relative to the x-space and

X-space respectively. Then

d- <  (4. 3)
"a 

0 

0
PROOF. Fix on any \ and corresponding x Consider

0an admissible direction issuing in * from \ i.e. a unit vector

g with



i0

!I

I

I j 0. (4.4)

Move a distance a> 0 from X0 along g. The corresponding

distance relative to x is

p q
s(o') = C'[ 7.., ( jx 2  11/2 (4.5)

i=l j=l

Using (4. 4). we may replace the term x! in (4. 5) by J

Call the result (4. 5) . From the Schwarz inequality,

,qq

S L _< ) < i= ,...,p. (4.6)
j =l j=l

On putting this into (4. 5)' and reversing the order of summation,

we get

s~~a) < € , (4. 7)

which proves (4 .3)

Now we will prove that a large , guarantees a good move.

LEMMA B. If o > 0 , a move in the X -space direction

g liven by (3. 5) will yield a decrease of at least o 2/462 in the

squared distance to the origin.
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PROOF. The directional derivative of Q in the direction

". relative to

dQ (4. 8)

We may rewrite this as

dQ ds (4.9)
dsX T lcy

By Lemma A, i.e. (4. 3). this implies that the directional

derivative of Q in the x-direction corresponding to ; satisfies

dQ < ( o (4.10)
ds -

Supposing that dQ/ds in that direction at x0 is exactly we

see that the formula for the squared distance along it is

2

Qs Q0 " -s + s2  (4.11)

s being the distance in Z relative to x . Here the -reader

should recall that the second directional derivative of the

squared-distance function Q. relative to x. in any direction,

is 2. The minimum of Q is attained at s = -/ . and its

value is " /  . Since '- > / the lemma is proved. -

iM
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We note an example where this estimate is exact.
1 2

Suppose p=q= 2, x (1. 1) , x = (3.1), so that W is the

line y= I . Since x = (2, 1), we get / = / . The direction

numbers (3. 3) are

Z(x.L). ((2, 1) - (1,1)) = 2(x.l). (L.0) 2x (4.12)

and -2x. So = 2,/ x , and we get 2 /4A2 = x2

The reader will in fact trivially verify that the estimate

2 /4A2 is exact whenever Z is a line. However that is the only

such case. Note that (3. 6) may be rewritten as

2 4 ., ((x c)'j )2 11/2 (4.13)

By the Schwarz inequality

C _ 2 x -c A (4.14)

equality holding only if x - c is parallel to d 2 x - xi for every

j , i.e. , is a line. Otherwise : < 2 jY-cI_ ., i.e.

2 2 2
/4r < (x - c) and the estimate is short.

Next we show that a small 0 implies that the solution is

nearby. We first need some notation.

t -.... . . .' ,•MA- -
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Identify a maximal linearly independent collection

k Denote

of the ii and denote it by (J )k 1,.... eot

the corresponding Kx p matrix by v , and put , = tT

The K y K matrix 0 is then positive definite. Denote its

smallest eigenvalue by

LEMMA C. The distance to the solution satisfies

Ix-ci < p/2 . (4. 15)

PROOF. Suppose that x and c correspond to X and Xc

Then we may write

x-c= . (4.16)

j=l

c
where j = X. . We could do this because the j sum to

zero. Now consider a j for which j) does not lie in the basis

k I k ........ Then vEj is some linear combination

kof the i , which we may substitute into (4. 16). After doing

this for each such j. we have a representation

K
Sk k

x - c = kk (4.17)

k=l

in which the coefficients no longer add to zero; we have not
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k
altered x . By the choice of the j this representation is

unique.

Put

k
9k = 2(x-C) . k . K. (4.18)

Then, from (4.17),

K
7- k k'

a = 2 V k  k =l. K (4.19)
k'=I

Now this may be rewritten as

2 (4. 20)

where (9 9 K) and V= ( 1 . . K )  . Since 2."1

-1
has the largest eigenvalue a , this implies that

-a (4. 21)

Now recall the alternate representation (4.131 for p. It tollows

from that that p . Hence (4. 21) implies that

IvJ I g/ 2 a (4. 22)



t4

Now from (4. 17). the Schwarz inequality, and the definition

(4.2). we get

lx-cI < Iv!A . (4. 23)

The assertion (4.15) of the lemma now follows from (4. 22) and

(4.23)

We are now ready to prove our convergence theorem.

CONVERGENCE THEOREM. Epch move with x # c

produces a new point x' with

-2/21 (4. 24)

Ix'-cl< e Ix-c(

2
where a is the smallest eigenvalue and I where L is given

by (4. 2). the trace of the matrix j .

PROOF. By (4.15) and Lemma B, the move decreases

the squared distance by at least

42 - c) -- __ (x-c2 (4. 25)
2 4, 2

(4. 24) follows immediately from this and the inequality 1 -u < e°.
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That the process converges is obvious from this

theorem. But it gives no useful information on the steed

of convergence. That smallest eigenvalue a could indeed

be much smaller than the trace. On the other hand, quite a

few extreme estimates went into the derivation of (4. 24). How

tast the algorithm converges must be tested by experience.

We now turn to the second task of this section. the

analysis of the tests involving the value. We have first to

quote a variant of a principle due to C. E. Lemke.

LEMKE'S CLOSEST-POINT PRINCIPLE FOR EQUALITY

CONSTRAINTS [Lemke [t], 1961] Consider the set B ot all

linear combinations b = of the vectors . There

are two possibilities. It may be that a a B . in which case

• y = 0 for all y satisfying (1 2) . Or else - f B In this case

there is a point b(a) of B closest to i. Put

v = i-b(:)I , v = (l/v)( - ( )) (4. 26)

Then y solves the problem (I. l)-(1. 2). and the value is v ).

4) Lemke's formulation had bj ,y < 0 instead of the equalities

JJwe have at (1.2) . His principle then requires the uj to be nonnegative:

everything else is the same.

W MA ENEMA m
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The proof of this principle is trivial; one simply

writes out the formula for the squared distance in terms of

u and differentiates. But it does not seem to have been

noticed before Le mke.

LEMMA D. For the y of (3. 2) , always

, . -= hi > v. (4. 27)

PROOF. As to the equality, first observe that

22x
x h = Zx - x 2 = I - 1 0 (4. 28)

a calculation similar to (2. 6) . Hence

(l/IhI) .h = (1/IhI) (a- x/x 2 ).h (l/lhl) h2  = hi (4.29)

As to the inequality, it is evident that the linear manifold #- is

a (proper) subset of Lemke's cone B, and so thi a distance
I a - b I with b E B The inequality thus follows trom Lemke's

principle.

So (Q. 3) in fact holds always without the c, and the

test ihI < e in the algorithm is correct.
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§ 5. On minimization in a class of quadratic forms

The idea of this section derives from Lemke's principle,

which we now write out somewhat more explicitly. For - E R q

put

ei( ) =1 % j4~ j  i =l[... (5.1l)
j=l

and then

K,.) 3() .3(j) .(5.2)

the dot product being in p . The principle says that the problem

of steepest ascent is equivalent to the problem of minimizing the

quadratic form E(.)

Now -we may consider the transformation 9 3 of (5. 1)

as mapping the 'base space" ot the "Lagrange multiplie rs "onto

the cone B in the 'image space" Rp of the x. The difficulty in

trying to work in the base space is that there is no intrinsic

connections between the local (metric) geometries. Steepest

ascents, or even good ascents, do not correspond. For instance.

. .. . . . .. . . .. .... .... .. I. . .. = 6-- -



18

in the original steepest-ascent problem (Q. 1)-l. 2). multiplying

one of the b. 's through by , say. . does not change the3

problem at all, but it considerably affects the geometry of the

base space. It was only after considerable efforts to make

schemes based on the base space work that the author came to

the idea of the linear submanifold Z of B, as a way of getting

at "steepest feasible ascent" in the image space directly. There

are intrinsic relationships between the natural metric x-geometry

and the metric X -geometry of the parameters, as we showed

above in Lemmas A-C. That is why our algorithm should work

well for the steepest-ascent problem.

And now we come to out point. For the same reasons.

it should work well on the problem of minimizing any quadratic

form given as the sum of squares of linear forms, as is the S(C)

of (5. 1)-(5. 2) . in all of Rq without boundaries . regardless of

provenance. All one has to do is treat it as a steepest-ascent

problem, apply our algorithm to obtain a sufficiently good set

(jI , and then put uj= ix Y j = l .... q thee. being

given by (2. 1).

So we have turned Lemke 's principle around.

//
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ENCLOSURE B

A VARIANT OF KARMARKAR'S LINEAR PROGRAMMING

ALGORITHM NOT REQUIRING PROJECTION ONTO THE

NULL SPACE

BY JOHN M. DANSKIN



ABSTRACT

Recently, N. Karmarkar proposed to solve a linear

program by mapping the problem projectively into a simplex,

using further projective transformations to keep the current

iteration point at the barycenter of the simplex. He finds the

direction of steepest descent from that barycenter by projecting

his objective vector onto the feasible (null) space. This method,

which requires the inversion of a matrix, has led to severe

difficulties of speed and accuracy in inverting the matrix, of

finding an initial point, and questions as to whether convergence

has in fact been proved.

The present paper uses Karmarkar's simplex, and his

projective transformations, but is otherwise very different from

his. The method, which involves bringing down a number of

"deficits" in a "balanced" way, requires no projection onto any

null space, no matrix inversion, no operations affecting the

sparsity of the matrix. It has no problems with accuracy.

There is a classical, real-number, proof of convergence,

not involving bounds based on the number of bits required to state

the problem. A FORTRAN program is being prepared for testing.

A
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We do not offer a complexity-type estimate of the

speed of the algorithm, because we do not have one. We

do not know how many steps the "inside" steepest-ascent

algorithm requires to achieve given accuracy, because the

convergence estimate for that algorithm, given at (4. 24) in

[1], contains quantities very difficult to estimate. What we

do have is a complete proof of the convergence of the whole

process. The speed of this algorithm can only be tested by

experience.

. .. . . .... ...f. .. .,. .. ... ..... :
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1 1. Introduction

This paper presents a new version ot Karmarkar's

approach [2, 3] to the solution of a linear program by mapping

the problem into a simplex and working thenceforth in the

simplex.

Our method has none of the feasibility or proof-of-

convergence problems that have arisen in Karmarkarts approach.

Furthermore, it has no projection onto the null space and no

matrix inversion.

It works by setting up a system of "deficits" in the

satisfaction of the conditions for a solution of an LP, including

the feasibility conditions. We introduce new variables,

analogous to the slack variables of the simplex method but not

really slack variables, so as to make the deficits all equal and

positive at the outset. Working then in Karmarkar's simplex,

we find a direction in which the deficits all go down by guaranteed

amounts, in such a way that the ratio of the largest to the smallest

deficit never exceeds 5/3

... ..



We find that direction by a new geometric method

for finding approximate steepest-ascent subject to equality

constraints, developed [i for the present purpose. The

constraints have to be met only very loosely: see (4. 9) and

(4.10). The sparseness of the matrix is not affected. While

some precision is important in setting up the linear manifold

on which the method of [1] works, there is no accumulation

o0 errors. These are in fact self-correcting, as we show in

S4.

At the time of this writing, the method has not been

tested. A FORTRAN program is in an advanced state of

preparation, and should be working by July. While the theory

presented in this paper is complete and ready for refereeing,

it will not be submitted for publication until the method has been

tested against commercial fast simplex methods like Tomlin's

WHIZZARD, under proper conditions, and we have comparisons

to report. Meanwhile, this paper is to be regarded as a private

working document, for the author's use in preparing his program,

as documentation in proposals, and for those of his colleagues

who wish to read it.



The organization is as follows. §2 states the problem,

defines the deficits, and states our objectives. 3 explains our

approach to the simplex, in rather more detail and with an

attitude rather different from Karmarkar's. He, for instance,

has only one simplex, and one "potential function' . We have

infinitely many simplexes, and infinitely many "surrogate

functions" . The main result of that section is the estimate

(3. 26) for the current deficit, jiven in the original space:

Karmarkar has given no such estimate. That estimate has on

its right hand side two quantities, an v that we have to prove

less than unity, and a "geometric mean" of the coordinates of

the current position point in the original space, which we have

to prove bounded.

In §4 we show how to move so as to get an improvement

while preserving the 5/3 ratio between the largest and smallest

deficits, a central aspect of our approach. In §5 we show that

the move of §4 yields a guaranteed gain, and estimate I at

(5. 19) . In § 6 we prove, by contradiction, that the "geometric

mean" appearing in (3.26) is bounded, and thus, with the results

of § 5 on I , complete the convergence prcof. The final §7

outlines our routine.

- -- - nna,,,,, - - . MA



2. Statement of the problem

We consider the LP

p p
Maximize C X = Cx. subject to 7 A..X. < B.. j q.....q

i i= I i (1.

and its dual

q
Minimize B .Y = B.Y. subject to AijY.j > C. i1. p.

j=l j=l (2.2)

in which X> 0 , Y _ 0 The primal variable X is said to be

feasible if it satislies the inequalities in (2. 1). and the dual variable

Y feasible it it satisfies the inequalities in (2. 2). It is trivial that

if X and Y are both feasible, then C .X < B .Y and a necessary

and sufficient condition that the pair (X, Y) solve the problems (2. )-

(2.2) is that C.X = Bey .

The standard approach to (2. 1)-(2. 2) is, first, to find

a feasible X. This, the "first phase", requires the solution of

an auxiliary linear program. Then, in the "second phase,'',

keepivig X always feasible, one seeks to increase C. X . In the

simplex method, one arrives eventually at a "basic optimal

solution", in terms of a "basis" . The test for optimality is

. ... I _ - -_ . MA



made in terms ot this basis: and the solution Y to the dual

problem is obtained automatically from the operations needed

to solve the primal.

Our approach is wholly different. We never have a

feasible X or Y. Rather. we have -t any time some nonnegative

pair (X. Y), and associated with that pair a collection o "deficits",

amounts by which the inequalities in (2.1) and (2. 2), and the

inequality C.X > B . Y . are violated. If none of them is

violated, then we have, by what was said above, a classical

solution. If several of them are violated, we seek to bring the

violations, the deficits, down. For us. a solution is a pair

(X, Y) for which none of the deficits exceeds some prescribed

small positive number. And we do not attempt to provide a

basis.

A basic difficulty with any schtme for reducing deficits

is that a move intended to reduce the (deticits at hand may

introduce new ones. We get around this by arranging things so

that everything is always in deficit. We introduce new

nonnegative variables U. i= 1,...,p Vi . .... , and

W, and put

dt------A Aft.



q

= )jAjY. + U. +C. i =1. p, (2. 3)

j=1

-P
A. A.iX. + V. - B , j = .. q , (2.4)

i= I

p q

C - CiX" + B .Y. + W (2.5)
i=1 j=l

At the outset we choose the U. , V. , and W are all positive
1 J

and equal. We from then on move in such a way that always

& jE [ 364 ' L4 I " (2.6)

That this can be accomplished, while driving A (generally) down,

is nontrivial, and a principal element of our method. See §4 .

So we are now operating in the space ot the (X, Y, U, V, W),

in the nonnegative orthant of Rzp+ 2 q+ . Our objective, given

a positive e , is to find a set (X, Y, U, V, W) for which (2. 6) is

satisfied and

O < A< .(2.7)

We are now ready to transfer the problem to the Karmarkar

simplex.
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5.0 /z , and 60 /z , whereJ

q
0 7 ) A..jY y1 + Ui0Ui + C.z, i =1. p (3.5)

j=l

p
o 0 A X0 X. + - B z ,j =1....,q ; (3.6)

L iiji j y
G , x. + B. y, +Ww . (3.7)

L z 1 ii Ljjj
i=1 j=l

For strictly interior to : , we put

0 0 0 00 = 0 O(F)/g(1) j q

(3.8)

00o(..) = .( )g =

where -() is the geometric mean function

() . / (m + 0 (3.9)
0 0 0

The functions T 0 00 and :p are then homogeneous of degreeThefuntios 'i I " '

zero. Karmarkar calls them (their logarithms) "potential functions"

I prefer to call them "surrogate functiuns"

"- ---.- &A..I:



§ 3. The problem on the simplex

Put m = Zp +Zq +1 and write _Z= (X, Y, U, V, W) . Choose

a R with E> 0 , k = 1,...,n, and so that all the Li A

and A of (2. 3)-(2. 5) are equal. For any E R m put

m70

+ ) (3.1)

k=l

and then

00

Ik = ,k- k = l,..,m . 32

These formulas define a transformation T O , called the Karmarkar
m

transformation , of R+ into the unit simplex

7: + .. + 1 k > 0 k : I, m+l (3.3)

.... m+1 - ..

in Rm 1 Its inverse, defined for M+l = z > 0 is

(TO) - 1 _ 0 r _ + k = 1, ... m . (3.4)-k k =k/'Dm+...

We will use the obvious notation = (x,y, Z, :),W,z) . The

functions Ai, Aj , and A transform under T o into the functions 6. /z
Lun3ion
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The transformation T has mapped the starting point

- Rm into the barycenter of Z , all of whose components

are l/(m+l) Moves, in Karmarkar's scheme, are made as

follows. One distinguishes some # interior to Z , in some sense

better than One then applies the transformation

t#  ' "kl/ k

: k , k= 1,.....m +l , (3.10)

'k k

which maps !# into Karmarkar thinks of one simplex 2

with one potential function (really an equivalence class) defined

on it. I prefer to think of replicas of Z , so that the original

0 0
simplex, into which T O maps, is Z0

, and the first of the

transformations t maps 70 onto 7l Put _l = (T0 )- I
IT

Then the product transformation T - TOt# mapping RI_

I z. 0
into 2 , is given by the formulas (3. 1)-(3. 2) with - replaced

1 . . I
by , and it maps ;- into the barycenter of . In general

suppose that N> 1 and that we have defined a transformation

TN-I mapping Rm into a replica ZN  I of 2Z as a mapping
0 N -I im

of the type (3. 1)-(3. 2) with z replaced by a - E R having

all its components positive. Suppose a distinguished # interior

to 7 -  is at hand, and that the inverse of - # under T N I is
NN

Then a has all its components positive. Now use (3. 10)
N-I N

to define a mapping of 2N - I onto a further replica Z of 7 .

and then put T = T N - t # . T N then maps R + into Z , and

. . . .. . . .. - -- -- --- L..



0 N
it is given by (3. 1)-(3. 2) with E replaced by This

Ncompletes the inductive definition of the T , except for the

precise specification of the distinguished point # , which

we shall give below in § 7.

We will need an identity, based on the above definitions.

NTN-1We defined = above to be the inverse of # under T . Since

the inverse of T is gotten from (3.4) by replacing the superscript

0 at both of its appearances by N - 1 , this means that

_ N = # =N - 1 / ; # k( . 1-..N = #-l k =,1, m *(3.11)

k kk m+l I

Now suppose E Z and define ' E N by (3. 10) . On

w riin
writing o 2.= L k/k ve get

=N = #N -l# 1) / # =N-1 #

k -kkk (k k k k m-M -1

k = 1.... m (3.12)

Also evidently

(~ = (g)/( ) .(3.13)

It follows that



Nk ) , k =1,..... . (3.14)

m +I

This is the required identity.

N N N
We now define 5. /z /z and 6 /z tobethe

N N
transforms, in ZN , of ji, Lj , and A under T The

N N N
functions 6. P 5 , and 6 are given by (3. 5)-(3. 7) with the

superscripts 0 replaced by N. And we define the surrogate

functions N and r N by making the same replacements

in (3. 8)

We now apply the identity (3.14) to (3. 8), with 0

replaced by N. It gives

N N-I '('')

( ') = 5 () X (- X 7# (3.15)

From the definition (3. 8) with 0 replaced by N - , we get

N ,) NI
p ( = # x () (3.16)

This identity, which Karmarkar never stated explicitly because

he had only one potential function and one simplex (the ratio on

the right appears as the rather vaguely explained additive term

S. .... ...... M A



in his definition of the potential function, additive because

he works with the logarithm) , is the fundamental identity

of his whole construction, and the reason why it works. It

Nalso explains why he needs the surrogate function c0 and

not some other function, say 6

Observe the following consequence. Suppose that

E Z- t# t# r Te

Nl

N N (3.17)

:P (r) z (nr

This is Karmarkar's "invariant projective cross-ratio", to

which he alludes but never makes explicit. It means that

one can track the progress of the algorithm in any of the

replicas of Z , in particular Z 0 , which we are about to
N N

do. We note that (3. 17) holds tor the :N and : . as well.

In what follows we suppose that at each stage N=0, l ....

we are able to find a distinguished # E ZN such that

N # N (3.18)

jJ E (0, 1) being independent of N . Using this and the apparatus

developed above, we find at (3.26) an estimate for (.) The

/
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proof is close to Karmarkar's (incomplete) proof of convergence

for the case when the value is zero in his early manuscript [2]

We said we would track the progress of the algorithm

0in 0 So we put

N N O.N , N = 0,I,. (3.19)

N 0 0-
The are now in , with =

Now (3. 18) and the invariant cross-ratio principle

(3.17) imply that

NI1 # 1 # Ni1 # -C -P (tNl l -I P ) < ) :0N- (t N l'g (3. 20)

where t # I denotes the mapping t# of (3. 10) when it is from

N-I N N.
Z onto ZN . That is, the inequality (3. 18) on N implies

zN-l
the same inequality on Z , but applied to the predecessors.

Walking this back to 70 and recalling the definition of N + as

# N
the inverse of under T , we get

0 N+1 < N0(,N (3.21)

0
Thus we have tracked the action back to Z0  Now concatenate

mAI



the inequalities (3. 21), with N replaced by 0, l,.... N-I. We

get

0(N ) < U N ( 0 ) , N = 0,,.... (3.22)

We now have to determine what this means relative to the original

problem in R+ , this is what Karmarkar did not do in [2]

We recall that 0 . From (3.7) and (3.8)

0( )  C X 0 +  B. Y. + W0  (3. 23)

which is equal to the original deficit A(-O) . From the

0 =N N
definitions of 6, and N we have

(-N) 6 0(N)/zN (3.24)

SN N
in which z is the last component of ;r. From this and (3. 23),

we see that (3. 22) translates into

N N 0 N N) Wx (= ) g(zN)/Z N  (3. 25)

We calculate the last factor in (3. 25) by substituting (3. 2) into

the definition (3. 9). This gives us

....



N 0) OzrN N) 1/(m+l)

< - 1  (3.26)[= 0 0 1/(m + )

This is our desired estimate of the deficit at stage N

In order to pass from (3. 26) to a proof of convergence,

we have to solve two problems. The first is that of finding the

distinguished # in (3.18) , while respecting the condition

N N C 3 N (3.27)
i  E 4T 4

corresponding to (2.6) . That we do in §4 below. That that

moves yields a guaranteed x E (0,1) is proved in 5 : see

(5.19) . The denominator in (3. 26) gives us no trouble:
0

we could have chosen all the initial -- to exceed unity. So

the second, and final, problem is that of finding conditions

under which the "geometric mean" term in the numerator is

bounded. We prove in §6 that this is so provided the set of

solutions of the original LP problem (2.1)-(2. 2) is bounded.



§4. The balanced reduction of deficits

We suppose ourselves at the barycenter at stage N,

N Nand that the 8i , 8N , 6 satisfy the ratio condition (3.28).

Our objective is to move in such a way as to guarantee a

decrease in 6 and to preserve (3. 27) .

The situation is substantially more complicated than it

is in Karmarkar's algorithm. He knows that there is a solution

somewhere in the simplex, and not as far as one unit away.

Hence there is at least a certain rate of decrease in the direction

towards the solution, and therefore at least that much in the

direction of steepest descent.

What we need is more than just the existence of a solution

somewhere in the simplex. We need not only a pull downward, but

a pull towards correcting the ratios when they begin to diverge. What

we need is to know the existence of points which are well, but not too

well, down, and have all the deficits equal.

.N ( N yNU N 'v N wN) m
To do this , we go to the point Z = VER+

at hand, find the largest deficit, and adjust the variables U. , V.I 3

and W corresponding to the other deficits upwards, so as to make

the deficits all equal. This gives us a point , whose image

Sh-MA
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in ZN we denote by " * Now there are two possibilities. We

consider the easy one first.

That is the case when

N( ) < 6( -)/2 (4.1)

In this case we move towards " , either to the (approximate)

minimum of N(z) or to '", whichever comes first. In

this case the ratios will be brought back towards, perhaps all

the way to, unity. And there will be a guaranteed proportionate

decrease: see § 5.

The more difficult case is

N N-N(--*) > 5 2) (4. Z)

We now drop the superscript N and write 6i P 5. , for 6i(),

6 ), 5( ) Now , on the assumption that the original

problem has a solution, there is a point 9** in Z with 5i t j

and 6 all zero. Corsider the line [ :, ' There is

obviously on that line a point g*** satisfying

) = ~/2) = 5( * *) = 6 /2 (4. 3)



for all i, j . It will be this unknown point we will try to aim

at, not the solution.

Consider the line segment t, = [,, . Denote

the length of t, by d , and derivatives along it by primes.

Then

d(6! 6 = 0 .(4.4)

Also,

d ' 6-/2 . (4.5)

On eliminating the d we get

6! = 6'(26/6) - 1) (4.6)

Similarly we derive

6' = 6'(26./8 - 1) . (4.7)jJ

So: we have proved that in the case (4. 2) there exists

a direction respecting the p constraints (4.6), the q constraints

. ... .. .. .... ... a ........ L A
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(4. 7), and the simplex equation in (3. 3), and at the same time

bringing down 5 at a rate exceeding 8-/2

What we will do, knowing the above fact, is to set

in motion the steepest-ascent routine of [] , asking for the

steepest ascent of - 5 which respects the constraints (4. 6),

(4. 7), and the simplex constraint. This routine, being

iterative and approximate, will never, except by remote chance,

ever achieve any of those equations exactly. But we do not need

exactness, except in the simplex constraint. At each step of the

iteration, we will "plaster" the current direction vector y' onto

the simplex by subtracting, from each component, the average

of the components, and then renormalizing. We then test the

inequality

-8' > JhJ/2 , (4.8)

in which 6' is the rate corresponding to the plastered y , and h

is given by (3.1) in (11 . This will assure that the plastered

vector is yielding more than half the maximum rate of descent

subject to the constraints; we explain this at the beginning of

§5 . If (4. 8) passes, we test the inequalities

! / 6 ' E [26i/6 - 5/4, 2.i / 8 - 3/4] (4.9)

and



6/' E [2 / - 5/4, 2A,/6 - 3/4] . (4.10)

We will accept the candidate plastered direction if all these

inequalities are satisfied. Suppose an i is accepted with

2 i/ - (4. )

where a E [3/4, 5/4] . Suppose one moves in the candidate

direction, with 6' = -s Then 8! = -s(26./8 - a , so
1 1

that at a given distance d

-i
( d )  = 5i sd(26i/6 - a) * (4.12)

Choose d'," (which might be greater than the distance to the boundary)

so that sd* = 6-/2 . Then 5i(d,': ) a6/2 , i.e.

6i (d *) / (d " = a (4.13)

Since the ratio 8i(d)/ 5(d) is monotone, and since it lies in [3/4, 5/4]

at both d = 0 and d = d* , it therefore lines on that interval for any

d E [0,d,] . The same obviously goes for'any j. It follows that the

ratio condition (3. 27) will be respected by any move that does not

reduce 5 by more than half.

. ... . . .. ..... .... .... ... . S.. ... .... . . - .. . ..



§ 5. Estimation of the improvement on a move

I

The purpose of this section is to estimate the
N(

guaranteed proportionate reduction in N ( ) on a move of

one of the two types described in §4 , and to discuss step

size.

We have first to discuss the effect of the "plastering"

of the direction vector to the simplex, and the meaning of

the test (4. 8) , both occurring in the "difficult" case (4. 2).

As to the plastering, for any positive C the routine of (11

will eventually produce ay' with 1s! < 1 , where

m+l

s = 1 { ( .I

Subtracting off s /(m + 1) from each Yk gives us a vector

y' satisfying Jy" - Y'j < C/(m+l) 1 / 2 . And the length of

v' differs from unity by less than 3 2 /Z(m-1l) . So the

plastered v differs from y' by only about e/(m+ 1) 1 /2

Hence the additional conditions (4. 9)-(4. 10) will certainly

evenhially be met. The operation of plastering is therefore

almost free of charge.

II - I I 'll - 1 .-



We now come to the question of the meaning of the

test (4. 8) . We need to have a relationship between the rate

of descent X (we mean X > 0) provided by the plastered y

- N - 0and the current value of - = 6N(!) . Denote by X the

exact steepest rate of descent for the constrained problem.

We do this in three steps. We first relate X to the X' provided

by the unplastered vector y' . This is accomplished by (4. 8),

0
which tells us that X >/2 We then relate X to X , and

0 -
finally 0 to -

As to the second relation, it is a characteristic of

0the steepest ascent algorithm that always X' > 0 . This we

proved at Lemma D in §4 of (l] . What happens in that

algorithm is that the current value comes down as the deviations

from the constraints decrease.

As to the final relation, recall that in this case there

exists a satisfying (4.3) . 5 decreases by exactly 8/2

on the segment [ , *** . And the length of that segment is

less than

R -lm/(m+l) , (5. 2)

P J&A
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the radius of Karmarkar's circumscribed sphere. So the rate

of descent on that segnent exceeds 8 /2R Now the direction

of that segment satisfies by definition the constraints of the

0
steepest-ascent problem. It follows that >6/R. We

therefore have

> 6/4R , (5.3)

which is the relation we need.

That explains the test (4. 8), in the case (4. 2) . In

the other case (4. 1), the direction we have chosen, the one

pointed straight towards , takes 6 down by at least 6/2

in a distance less than R. The X for that direction therefore

exceeds 6-/2R . Hence (5.3) holds in that case as well.

The rest of this argument is simply a very-much-reworked,

simplified, and in some respects amplified, version of Karmarkar's

derivation of the corresponding estimate in [2] . In particular we go

1/4 of the way across the inscribed sphere.

We have first to write out the simple properties of the

geometric mean function q(g) of (3.9) in the direction of the move.



Put

G(t) = Q( +yt) . (5.4)

Then

G(t) h(t) (5.5)

where

I m+1

h(t) Y k (5. 6)t ht) =L Mkt

k=l

We get

h(t) = k(t) , (5.7)

whe re

M+ 1 2
I k (5.8)

'1 1[- k(t) ]I

So h(O) 0, and h(t) is strictly decreasing. Next

(t) (t) k(t)] (5. 9)
m+I m+1



I
By the Schwarz inequality, the quantity in brackets is nonpositive,

and it can be zero only if Yk 
=  k(t) for allk =1,...,m+l , j)

being some proportionality constant. Since the Yk sum to zero

and the k (t) to unity, we would then have W = 0, so that all

the Yk are zero, impossible because y is a unit vector. Hence

the quantity in brackets is in fact strictly negative, so that G(t)

is strictly concave.

Put

r = /I/m(m +i) . (5.10)

This is the radius of Karmarkar's inscribed sphere.

We need an estimate for h(t), on the interval [0, r/4]

We assume that m > 2 . Then

1 1 2 -( . 1

k__ _______ + 1__ 3(m +1) 1
> m+l 4,/m(m+l)

Hence

m+l

k(t) < - (m+l)2  (M = 1m+l)2  (5.12)

k--



It follows that

0 -h(t) <9r (m +l) 2  (5.13)

on [0, r/4] . This is the desired estimate.

Now put

.CD(t) = 6 (- (0)) (5.14)

This is the objective function p(.) , taken along the line. Then

(t) - G(t [ + m+l ( t) (.15)

Using (5. 3) and (5.13), we estimate the second term in brackets:

0< 6 ( t) h(t) < 6 h < x 9r-(m+,) = 26
m+1 1 +I x - ( 6

(5.16)

Hence

< _ 7  1 (5.17)16 ×' Gt-' W

Putting this together with the definition (5. L4) and using (5. 3)

once again, we get



I

d [o (t)] < - 7 2 -x < (5. 18)

ot 16 x 4R, 64R

On integrating this across [0, r/4] , we get

7/256m
c(r/4) < e(0)e - (5.19)

Hence we would have (3.18) and hence (3. 26), with Lu = e 7/256m

if we were to choose # = (r/4) . We have thus achieved the

desired guaranteed proportional reduction in the surrogate

function z .

Move length . It would be absurd to make the above

choice of # in computational practice. Karmarkar in [21, and

I here, chose it only to obtain the estimate (5. 13) for h(t) and

hence the guarantee (5.16) . In fact the function (t) of (5. 14)

as the quotient of a linear function and a strictly concave function,

has a unique minimum on the line, which can be many small

sphere radii out. It is a trivial exercise, requiring very little

computation compared to that required in case (4. 2) to obtain

the direction, to obtain an approximate minimum using a few

steps of a halving process. It is by such a halving process that

I propose to choose #

) [Footnote next page]
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[Footnote to previous page]

-') Karmarkar had not, until I called his attention to

it in October 1984, yet noticed the unique minimum property

of t(t) . Perhaps his use of the logarithmic version obscured

that property. He had been using a "three-point test"

IMA



§6. Convergence

The principal objective of this section is to prove

the following assertion.

LEMMA. If the set of classical solutions of the

original LP problem (2. 1)-(Z. Z) is nonempty and bounded,

then the "geometric mean" term

N N l/(m+I) (6.1)( = ..... -
( 1 (6.

appearing in the estimate (3. 26) is bounded.

PROOF. We will prove that if that term is unbounded,

then there exists an unbounded solution set for the original LP.

Suppose then that the quantity (6. 1) tends to infinity

on a subsequence of the N. Then it will eventually exceed unity

and therefore be less than the true geometric mean

ZN -N U/m
( . M.. ) . Since trivially

N N + + N

l /m < m ' (6.2)

IM
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we may replace the factor (6. 1) in (3. 26) by S/m , where we

have written S N +'" +-N Recalling the definition (2. 5),

we then have

p qP N ' N 'N N 0

0 < -_i C.X. + B.Y. + W N< A A(-0 )/m , (6.3)
i=l j=l

where we have written zN N7 and A= (=0.... "*n0

Since always Ai lj <A (5/4)A , we get similar estimates from

(2.3) and (2.4) , with an additional factor 5/4 on the right

hand side. Because ,, E (0, 1) and is constant, and because

everything else on the right hand side of (6. 3) is constant, the

term between inequality signs in (6. 3) tends to zero. This is

so also for the estimates obtained from (2. 3) and (2.4) . Since

is on the unit simplex in R , a subsequence converges

to a limit , also on the simplex. We thus find that

q

L A..Y = U, i=l....p (6.4)j I
j=l

from (2. 3) ,

A..X. = V, j =l,...,q (6.5)

i=l

from (2.4), and

MA
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1

C.X -  B.Y* + W* (6.6)

from (2. 5) ; also

m p q p q

-k " +  Lui + V + W= (6.7)

k=I i=l j=l =I j=l

Now suppose that the pair (X, Y) is a solution of the

original LP (2. )-(2. 2) Filling in with slacks U. and V. , we

may write

A ijX. + V. = B , j (6.8)

q

AijY. U, =G. , i =[...,p , (6.9)

j=l

B.Y = C.X (6.10)

Now multiply the equations (6. 8) by Y* and add. Taking account

of (6. 4), we get

B.Y" = X.U,:' + V.Y* (6.11)

Next, from (6.9) and (6.5), we get

CX :- V*.Y - U.X* . (6.12)



Putting these together with (6. 6), we get

W-!- + X.U=:= + UX* + YV:* + VeY* = 0 (6.13)

Since W , and all the dot products in (6.13) are nonnegative, then

they are all zero. Hence, in particular, from (6. 11) and (6. 12),

C. X* = B.Y* = 0 . (6.14)

Now it is not possible for all the X , and Y-? to be zero.i J
If this were so, we would have all the U-; equal to zero from1

(6. 4) and all the V* equal to zero from (6. 5) . And we have
.

just proved that W* = 0 . This would then contradict (6. 7).

So suppose that some of the X' are nonzero, and1

write

X = X + tx* , t > 0 . (6.15)

Then, by (6. 8) and (6. 5)

p x.
. X < B. , j =1,...,q. (6.16)

i=l
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tt Hence Xt is primal-feasible. From (6. 1() and (6. 14),

x = C X = CY . (6.17)

It follows that the pairs (Xe, Y) , t > 0 , torm an unbounded

solution set for (2. 1)-(2. Z) . We make the corresponding

construction if it is that some of the Y . are nonzero. The

lemma is proved.

The above proof by contradiction does not give any

indication of what the bound on that "geometric mean' in (3. 26)

is. But it does in fact provide, by asserting that some bound

exists, a polynomial estimate of the number of steps of the

outside algorithm required for given accuracy.

WAe however do not have a polynomial estimate for the

number of arithmetic operations required to achieve given

accuracy. This is because the inside algorithm, the steepest-

ascent algorithm of [1] whose role is described in 4 above, has

an estimate, at (4. 24), involving the eigenvalues of a matrix

depending on = . We do not even know that the whole series f a N

converges (unless the solution is unique) . So we have no estimate

of the smallest eigenvalue a appearing there. All we know is that



that routine yields, in finitely many steps, any desired degree

of accuracy. So we will state the overall convergence result,

a consequence ot the estimate (4. 24) in [1] and of the Lemma,

very simply as follows.

THEOREM. The algorithm of this paper, which

incorporates the steepest-ascent algorithm of [1, will answer

to the objective set at (2. 7) above in finitely many arithmetic

steps.
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§7. The routine

I
This section is intended to provide a summary guide

to the practical execution of the program.

We suppose available the steepest-ascent algorithm

of (I], whose action is described there in §§2, 3 . In that

algorithm there is an objective vector a , defined in some

K t, KR and constraints b', also defined in R, with

S= 1,..... L . The original problem it is conc rned with is

that of maximizing 2.y subject to the constraints I 1

y = 0 v, = l...,v L S Suppose that maximum is v.

The routine finds an approximation to the solution of this

problem, in the following sense. Given C positive, it

either states that v < e , or else produces a unit vector

v' E R K satisfying a.y' >_ v and 1" t . Y' < e , t = 1.... L .

The main routine is executed relative to strictly

positive vectors _= (X,Y, U,V,W) E Rm =RPXRq×RPXRq× •

It begins at a starting point _0 = (X0 , Y0 , U0 , V0 . \V0 ), determined

as follows. X0 and Y0 are chosen arbitrarily, with all the X 0 and

y0 strictly positive. For instance one might choose them to be



all equal to unity. The U. V0  and W 0 are then chosen to
0 0)

be strictly positive and such that all the deficits A i = A( ,

0 _0) 0 0)= L ( , and A = ( defined at (Z.3)-(2.5) are
J 3

strictly positive and equal. The routine is now ready for the

execution of tep 0 .

At the outset of step N, N > 0 , the routine is at a

N
point , all of whose components are strictly positive, and

N i( N )  N _N
for which the deficits A. = , j = N j (N , and

N N

= A( are all positive and satisfy (2. 6) The problem

is to find a direction for a move on the corresponding simplex

7N. We now have to treat the two possibilities considered at

the beginning of 54 .

NWe begin by finding the largest of the deficits Ai

N
A , , at hand. Suppose its value is A We then put

U U. + N N
A .- i 1 '. . .,p , V = V. j j "" q

(7. 1)
- NW* W + s - .

At the point - = (X N , Y N , U*, V*, W-:-) the deficits are now all

equal. Denote its image in ZN under T N by . (Recall that

N 0 NT is given by (3. 1) -(3. 2) with reilaced by . ) Now test



the inequality (4. 1) . If it passes (which seems --n general

unlikely) , we get an essentially free move. We take y to

be the direction pointing to £ , i.e. y ( '- =)/ [ - ,

and pass to the description of the "Move on the simplex", below

If (4. 1) fails, we are still guaranteed a balanced

reduction, but at substantially greater cost. The algorithm

calls the steepest-ascent routine, operating in the space

K = + q + 2 of variables = (x, y, Z,,w,z) The

objective vector . is now read off from (3. 7), with 0 replaced

by N, as follows. We put

N x yN k =p+l .p+q
kk 2k k-p k-p

(7. 2)

2k 0 , k p+q+l,...,2p+2q 2 2p+Zq+l 0 , 22p+2q+2=0 .

There are L p+q+l constraint vectors b , whose construction

requires some intermediate definitions, as follows. We first

define vectors ci E R 2 P + Zq +, i I,..., p , read off from (3. 5):

ii = _N

c C . k = l.... Pp; c A. Y k =p+l, ... ,p+q:k kp 1, k-p k-p

ck 0 , k = p+q+l,2p+2q+l , except tha c U: (7. 3)

i C
Zp+ 2 q+2 i



Next we define vectors dj R2P+2q c R, j 1,..., q, read off

from (3. 6):

N
dJ = AkX k = ,p ; J 0 , k =p+l ... 2p+2q+lk kj k

(7.4)

except that d +j -V dJ -B.p+q j i Zp+ 2 q+Z 3

Next we define scalars

N N N N

(7. 5)

Finally we define

" c'" y.Ip d - p -1, = p+l ... p+q.
= c - + - . . p + q- ._

(7. 6)

These correspond to the constraints (4. 6)-(4. 7); see the text following

those formulas. The final constraint vector has

P + q + l= I , k= I,...,Zp+Zq+l : (7.7)

it is the simplex constraint.

Each iteration of the steepest-ascent algorithm produces

a unit vector v' , generally speaking not satisfying any of the

MAb



constraints. We "plaster" it to the simplex by subtracting,

from each component, the average of those components, and

then renormalizing. We denote the plastered unit vector by y

We first test the inequality (4. 8), which here reads

2y> IhI/Z ,(7.8)

f where h is the vector, used in the construction of y' , given

by (3.1) in (l . We then make the tests corresponding to (4.9)

and (4.10) of this paper. They are:

b t *y E [x- /4, K' + 1/4] , '= l,...,p

(7.9)

E [ - 1/4, ' + 1/4] , = p+l, ... p+q

If any of these test fails, the steepest-ascent algorithm proceeds

to its next iteration. According to the theory (see §4 , especially

following (4. 7), eventually all the tests must pass, and we have

the desired direction for a move in the simplex, bringing down

O(g) = 6 ( ) /g( ) and respecting the requirement (3. 27) on the

condition that the move is of length not over 1/2

iM



The move on the simplex. Whether we are in case

(4. 1) or (4. 2), we now have a direction y of guaranteed

balanced reduction on the simplex. We seek the approximate

minimum for the function 4)(t) of (5.14) . We know from

(5.18) that this function is still decreasing when t = r/4

So we set the initial left endpoint for the halving process at

a = r/4 . As to a right endpoint, there is first the boundary.

Next, in the case (4. 1) one cannot move too far beyond *

precisely not beyond P** = + 2(*- ) = 7 + 2V' , without

running a chance of violating the balance condition (3. 27) . In

the case (4. 2) one cannot move more than 1/2 for the same

reason. If the effective upper stop is now still the boundary,

one uses a halving process, starting with left endpoint at

r/ 4 and right endpoint at the boundary, to find a point where

$(t) > 0 , and puts b equal to that t. If in case (4. 1) it is

; that is at the stop, we test the sign of (t) . If that is

negative, we put #= "* and pass to the projective transformation.

If it is negative, we put b = 9*-' and pass to the halving process.

If in case (4. 2) the upper stop is d/2 , we proceed similarly.

At this point, if we have not found from either of

the two special cases noted above, we have a lower limit a = r/4

and an upper limit b, for the minimum. We then begin the

.. ......................... ... . . . . _.__ ._ - -- -- -- -- --- -- -- -- --
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halving process, testing the midpoint and at each step redefining

a or b . If in the unlikely event that we find a point where -(t) = o

the process stops . Supposing it does not stop that way, we run

it a few iterations, perhaps ten or twenty ; there is no reason

to seek high precision here. Then either the 7 at the stop,

or the ; corresponding to d = (a +b)/2 will be taken to be ;#.

The projective transformation . This is very easily

executed. One simply uses (3.11), with N replaced by N+I,
to define N+l from N and One is then ready to

execute step N+I The algorithm terminates when the criterion

(2.7) is met.
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I
An Experimental Approach to Karmarkar's Projective Method

for Linear Programing

by

J.A. Tomlin

tntroduction

A September 1984 article in Science [131 made breathless claims for

the speed and efficiency of a new linear programing (LP) algorithm devised

by N. Karmarkar [101. Furthermore, claims were made that numerical results

prove the new method up to 50 times faster than the simplex method.

Unfortunately, no information on the test problem(s) or experimental

procedures wre given. Only limited details of the new implementation have

so far been discussed publicly.

At first sight, the prospects for such a new algorithm are mot

bright. Thirty-five years of attempts to defeat the simplex method (21

have met with uniform lack of success, the mst recent being the Scolnik

and ellipsoid fiascos. This generally gloomy outlook is complicated by two

further faccors implicit in Karmarkar's approach:

(1) Like the ellipsoid mehod, it takes the unpromising step of non-

linearizing a linear problem.

(2) At least initially, it makes the entirely false assumpt.on that

any feasible LP constraint set possesses a strict interior (i.e.,

a solution positive in every component). Hany real LPs are highly

degenerate (17].

Zt seems that the only way to evaluate these conflicting viewpoints is

to perform some computational experiments on reasonably representative L?

1 L.



models and extrapolate the results. This paper reports on the results of

such a set of experiments. The next section reviewi the steps of the

algorithm as outlined in (101. The following sections describe som

additional constructive steps for getting started, the implementation,

experimental results and conclusions.

1. The Prolective Al gorithm

While some familiarity with Itazuarkar's paper is important, we include

the following brief outline of the projective algorithm as presented in

The LP is assumed to be cast in the almost homogeneous form:

min z - z (s)

subject to

Ax - o (1b)

T
ex I , x > 0 (Ic)

whe.re e is an n-vector of l's, A is m x n, and the ini-m z is

assumed to be 0. It is also assumed that there exists a solution to (1)

with the propert that x > 0 ( " 1, ... , n).

Under these assumptions, let D = diag (zi a ) and employ a

projective transformation and its inverse, defined by:

MA



x T Ix
x' ".---- , a *- (2)

a D- x eTDx'

The second of these cransforms the LP on a simplex (1) into the fractional

program on a simplex in x'-space:

Min -CDx (3a)eT~
e TDx'

subject to

ADx' - 0 (3b)

and

T ,
• x .I , X' > 0 . (3c)

Note chat from the definition of D, the point x in x-space is mapped

onto the point (1/n, ..., i/n) in %'-space. The general idea is now to

ignore the denominator in (3a), and take a "large" improving step away from

the center of the simplex to a new point in x'-space. This is transformed

back into x-space and the result evaluated.

Specifically, the algorithm generates a sequence of points x
(2) (k) (1)

x ( .... , (, where x > 0 (j - 1, ..., n) as follows:

- diag (k) (k)1. Define D (x , ..., xn  ), and:

3_



2. Compute:

c [I - BC U T) -1 B Dc, (4)P

(i.e., project an "ascent" direction for problem (3) into the null-

space of. its constraint matrix B).

3. Normalize c and scale it by the radius of the largest sphere which

can be inscribed in the simplex (3c) to produce the direction vector:

C

pa - . (5)

I cp

4. Take a "descent" step of length a to a new feasible point for (3).:

1

x' e - m p (6)

5. Project x' back into x-space to obtain the new point

( "1) -- • (7)
T Dx,

I the new point satisfies the termination criterion, stop. Otherwise, set

k ik+I andI go to 1.

4



It should be clear that the great majority of the work in each itera-

tion comes in step 2, which ensures feasibility of the new point.

2. Getting Started

There are two details to be cleared up in obtaining a first feasible

interior-point solution to LP (1). First of all, the problem must be

homogenized." LP problems are more comonly expressed in a canonical form

such as:

T
.in z = c x

subject to

Ax b (8)

x>

Karmarkar suggested scaling the variables by some plausible upper

bound (say a) on their sum, so that:

Ai - 9 - b/a (9)

and then =l:iplying S by e x - I to obca .:

(tAQ1 - be0) ( 0 (0)

3



T-

where a and here are of dimension +1. Since b is normally much

denser than the colus of A explicit construction of (10) is to be

avoided if possible.

One acceptable method is to define a new variable corresponding to the

right hand side in (9) after scaling, and forcing this variable to be 1:

A;- (b/ a)g 0,

,"1I, (11)

T-

4 x + x 1  1.

The last two constraints may be replaced by:

8T-

T-2eT x + + x t "+ 2.

Scaling all the variables again by 1/2 we obtain:

A - b/a 0 0

e - 1 o 0 (12)

T
e 1 I

L J LJ

> 0

6



and a solution to (8) may be recovered as x = (J - 1, ... , 2).

! Vote thac A is unaffected, but a singLe dense row is added.

Karmarkar also suggested the construction of an ar:iticial colu to

obtain a scarting incerior solution to (1). This involves adding a new

colu= (say d) and variable to (ib) and (1c) -

Ax + dX 0

T

such that e/(r+l) is a feasible solucion, and then minimize % co zero

(or close to zero). Using che construction (12):

A - b/7 0 d 0

a -1 0 (13)

T

and retaining the convention thac A is m x a, a starting solution of

ei'(n,-3) implies chat d a b/i - Ae, 8 - -n.

For these experiments we thought 1t better cc start wi:, a different

interior poin. We already know that the variable in.-. corresponding to

the righ: hand side must be 1/2 in a feastble solution - qui:e distant

from L( n-3). In addition, the slack value x- 2  may be substantial,

7
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since the value a will rarely be knorn accurately. Finally, an initial

value of L/(un+3) for X gives the algorithm very little to "bict" on,

since this is not very far from the target value of zero (or ) or even

moderate n.

We have used the starting solution:

I , (J -l..., n)

(14)

r$1 %+24

vhich gives the arificiaJ coefficlent values:

b Ae
d - b- A 6-a' M

This has proved satisfactory in practice.

3. Implementation

To initiate these experiments the author's LPM1 Fortran LP code was

modified to give a test bed implementation (LPM) of Karmarkar's algorithm

for sparse LP problems of moderate size. (We had previously modified this

code to test Scolnik's approach (151).

The matrix [A, -b/al] has its non-zeros stored contiguously column-

vise in arrays IA(.), A(), specifying the row indices and values.

Another array LA() points to the beginning of each column. Slack

colus- are stored for each L and G row in the conventional MS format

[121, but no logical column is generated for an E (equality) row. Ail

a
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I
free rows are dropped, except the designated cost row, which is stored as a

full vector. All of these arrays are constructed as the LP model is read

in MPS format. Note, however, that bounds and ranges are not allowed.

The artificial colum is constructed immediately after input, but the

two dense rows (=e1) and (m-2) are never stored explicitly.

As we have pointed out, the bulk of the work in the algorithm is the

calculation of a projected vector (4). It turns out that the calculation

(4) is equivalent to finding the residual of a least squares problem:

yaarg min I Dc - sty 12 1aysr.nIc3t (ISa)

c - Dy- . (15b)

There are several methods of computing this vector (see (6,7,81). The

mathod chosen for this implementation is the popular one of computing a

matrix decomposition:

Qs T r R Q : [c I
S0 2

where R is upper triangular, Q TQ - I and B is initially assumed of

full rank. cp may then be computed via y a R' - 1  and (15b) or:

p L -- I -- B' D' ' c .(!7 )

(.lternative procedures will be discussed below.)

In our initial code, Q was computed as a product of Rouseholder

transformations:

/9
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Q 2 Hi

where

and

Each transformation Hk  eliminates the elements (lc+1), (k+2), ... of

column k of k-i " * 2 H1 B

Some attempt to exploit structure was made by permuting 3T  in the

general form of Figure I (see Saunders (16]). Unfortunately, b is

usually quite dense, and d often completely dense, and any QR decompo-

sition of BT  results in a completely dense R as wall as dense v ( k )

vectors to be stored for the "

The calculations involved in computing the descent direction in (17)

are simply routine sparse matrix multiplication and forward and back sub-

stitution with R.

4. Experimental Procedures

Table I displays the characteristics of 11 test problems. The first

two are merely small text book models. GNET20 is a 20 node generalized

netvork (transportation) problem. STD23 is the "standard 23 row refinery

model" used for many years as an illustrative model. AFIRO, ADLITTLE,

SHAJE2B, ISRAEL, BRA1DY, E226, and BANW are realistic models which have

been used quite extensively as test problems. Note that the non-zero count

includes the slack colums and right hand side, but not the two dense rows

and the artificial column d in (13).

10



Table 2 gives solution data for the models using Ketron's MPSZZI

system [121. The times include initialization, CONVERT, SETUP, solving via

WTIZAID and SOLUTION. The time quoted is for the entire job step on an IBM

3033/N. The number of "eta non-zeros" given refers to the number produced

by the final LTTERT before the solution is printed. The "Crashed" columns

are made basic by inspection in tHIZABD before beginning the simplex itera-

tions.

Two important parameters are needed for the projective algorithm:

(a) A convergence tolerance must be specified. The objective functions of

the test problems have been translated by their known optima so that

they assume their minima at zero (see (101). All the problems except

ADLITTLE and ISRAEL have optimal values of order close to 10 . Those

problems had their objectives scaled by 10 to bring them into this

range, and the convergence criterion for the translated optima was

arbitrarily set to 10" 6 for all runs.

(b) The length of tne step a must be specified or computed. Karmarkar's

paper [101 implies that a should be some constant less than I (in

fact 0.25 is suggested as "safe ). Experiments using fixed values of

a for two problems showed the number of iterations required for con-

vergence to be inversely proportional to a (see Table 3). An

initial (constant) setting of a a 0.9 seemed "safe," and was

adopted.

Table 4 gives solution data for this version of the projective

method. Two factors other than iteration numbers and times are of particu-

lar interest. These are the number of non-zeros in the Q and a factors

Tand the approximate condition of BB , which is critical for the accuracy

11



of the projection step (4). The condition of R is approximated by taking

the ratio of the mium diagonal element Jr~il and the minimum JIril.

This ratio is squared to approximate c(BBT). In general the number of

non-zeros in Q and R decreaes throughout the run, while the condition

number increases monotonically.

These initial results show three important trends:

(a) A not-unexpected deterioration in the condition of R (and hence

B T ) as the algorithm progresses.

(b) A disappointingly large, but quite slowly growing, number of

iterations with problem size.

(c) Catastrophic Fill-In of Q and R.

Tl-conditioning of R is to be expected as diagonal elements of D

approach zero and hence B approaches column rank difficiency (especially

for degenerate models). A may also be row rank deficient initially, since

we do not necessarily have a full set of unit columns. We must therefore

have a method of rejecting rows of A (columns of BT) for elimination in

(16). This may, of course, be done by means of a tolerance on acceptable

values of Ir ii. A value of 10 "1 2 is used here for all elements of Q

and R. Some more sophisticated method is clearly desirable.

The ill-conditioning of R can sometimes be overcome simply by

avoiding its use. M.A. Saunders suggested using the formula:

cP Q qT 1 0 Z 1 QDC, (18)

12
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(where the 0 diagonal matrix is of the row dimension of B), rather than

(15b) or (17), involving only the necessarily well-conditioned Q. Experi-

ment showed that this did indeed allow convergence to tighter tolerances,

though (18) may require prohibitively more work if the nILber of non-zeros

in Q is much greater than in R and 3.

5. Modified Stop Length Calculation

The number of iterations, as we have observed, tends to be inversely

proportional to a. There is in fact no good reason to restrict a to be

less than 1, except for proving theoretical complexity results [10]. What

we do require, from (6),is that:

a <L i (19)
-- pi > 0 'Pi

We would also like to guarantee that z +1) < Z(k). This may not happen

in some circumstances. In particular it was observed that when some of the

problems were infeasible (due to input errors) and a was fixed (0 < a < 1)

the phase I objective function X oscillated, and these oscillations did

not converge. This un-robust behavior suggest a look at the conditions
(k)

under which we expect z to improve.

Defining

-k) a - (k)  (20)

I
we easily see from (la), (6) and (7) chat

M
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=(k~l) z( k )  ad p

" * - (22)

Clearly z( k + ) is monotonic in a, but a decrease is not guaranteed. The

four cases which do satisfy z < z(1) for some range of a are:

- v z(k ) > 0 and:

(i) v > 0 -0 0 < a < 1/v,

(ii) v ( 0 0 < a,

- 2( k ) < 0 and:

(iii) v > 0 -0 a < 0,

(iv) v < 0 I/v < a < 0.

The oscillations must be due to cases (iii) or (iv) arising when we insist

that a be a positive constant.

The oscillating case may be avoided by setting a < 0 is cases (iii)

and (iv). Note that this has never been observed to happen in practice

unless a model is infeasible or the constant a in (9) is chosen to be too

small.

The a calculation to be used in practice is then to specify a

nltiplier 0 < I < I and in cases (i) and (ii) above set:

14
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i
(i) a min (0, 1/v} (v > 0)

I (23)

( .i o - (v < O)

otherwise we simply put n = -a in case (iii) or a min (-!z, I/v}

in case (iv).

The problem of fill-in was left temporarily in abeyance and the sec of

problems in Table 4 rerun with the revised step length calculation (23).

The number of iterations in Table 5 is reduced by a factor of about 4

for the larger models. There does seem to be some loss of accuracy in that

there was difficulty in attaining convergence for problem SHABRE23. This

was immediately overcome by use of formula (18).

6. Reducing Fill-in

The presence of the right hand side column b in 3, and of d in

phase I, almost guarantees complete fill-in of R (and of Q within the

envelope implied by an ordering such as seen in Figure 1). This cata-

strophic fill-in can be avoided by initially omitting the offending columns

from 3 (i.e., rows from B T ) and using an "update" to compute the least

squares solution.

if B - [31 3 2, where 32  contains the "nasty" columns, the

procedure is to form the modified factorization

T

and solve a modified least squares problem to obtain:

15



a iLi~ I  T
y runDc - 31yl2  ,

JY1

where D and c are partitioned conformably with B.

There are a number of ways of modifying this solution y to obtain

the solution to the full ptoblam (15) (see e.g., (31). In its simplest

form this updating requires us to calculate:

t T.-B2 f 22 c 2
- 1 . v , (24)

where v solves:

(I + rFT)v - f • (25)

Ignoring the work required in solving (25), this calculation is dominated

by a forvard substitution using i for each row of 2 and a back

substitution for F v. The assumption is that the total work vil be less

than that using QR when H becomes dense. Note that only the updated

solution y for (15a) is obtained, not an updated factorization.

7. Modified Phase I

In addition to the above feature, another improvement was made, which

can reduce the number of iterations in phase I. Kar-arkar has pointed out

[11] that X need not be non-negative and can be omitted from the step

length calculation (19). If the a chosen results in X < 0, one can

interpolate between x W and x(k l)  to find an x such that
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\ 0. In our terms, using X for x W in (21), and letting pd

correspond to the component of p for the artificial colu- d, if

g d <0
I a-v

then reset a to I/(npd).

8. XMnimum Degree Ordering

Once care is taken to avoid fill-in in & (actually i) it makes

sense to use a more sophisticated ordering than that employed so far. The

method chosen was the "minimu degree" ordering of AAT (see [41), since

T T T U Tthe non-zero structure of L , where P AA P = LL , is the sama as the

T Rnon-zero structure of R, when we compute QDA P [0].

This ordering requires finding the non-zero structure (not the values)

of AA T , that is its "adjacency matrix," and then application of the

minimum degree algorithm to this structure. We used the data structures

and procedures in [41 without modification and attained very satisfacr-y

results. The only exception to use of this ordering was for problem

SHARE23, which turns out to have a natural "block angular" ordering rith

dense diagonal blocks above the linking rows. This structure is almost

ideal, and is used as it stands.

The non-trivial models in Table 5 were run again with the three

enhancements in Sections 6-8, and the results are displayed in Table 6.

The Lprovement is substantial, and the times for this subset of models

begins to bear comparison with the M$SI imes.I
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9. Use of Givens Rotations

Attempting to build on this success and solve model E226 met imt diate

difficulty. For larger problems, trying to perform the QR decomposition

using Householder transformations becomes impractical an the number of

intermediate and final non-zeros becomes very large, as illustrated by

Heath [8]. The method of George and Heath [31 overcomes this by never

Tstoring Q and using Givens rotations to alimnate rows of 3 , building R

with a row-wise data structure.

Using the George and Heath technique we are able to make use of the

full power of the minimum degree ordering and symbolic factorization pro-

cedures described by George and Liu (4]. The adjacency matrix is con-

structed as before, and the minimum degree ordering (of the columns of A )

is found. This is followed by a symbolic factorization wLich predicts

where all the non-zeros in I will be (assuming no cancellation). The data

structure for this (mildly pessimistic) estimate of the sparsity pattern of

& is set up once-and-for-all, and used in all subsequent factorizations

(at least in this implementation). Note that since Q is discarded, we

update the Dc vector simultaneously with the factorization, computing:

Q ,,ATp DDo a QDC] . (26)

Using this approach, we were able to run all the models in Table 1,

with results as shown in Table 7 (omitting the first two models).

There are some differences in the data displayed. Since we work only

wdih R, obtaining c directly as in ([Sb), the estimate of <(R), not

p

18



its square, is given. There is tow only one mnber for I non-zeros, as

computed in the symbolic factorization of AAT. (This does not include

diagonal non-zeros of R or those in the last two columns.) The size of

the step length a actually attained is also of interest (note that =

0.99 is used here).

10. Discussion of Comautational Results

It is clear that the Givens-George-Heath approach has again resulted

in substantial improvement, and enabled the solution of the larger models

in tolerable - if not competitive - time.

The very bad performance on problem ISRAEL is due to the presence of

three very dense columns (as w&U as several dense rows) in the L? matrix.

This difficulty could be partly overcome by using an update to introduce

chose columns - chat is Including them as "nasty" columns along with b

and d. The present implementation does not allow this. However if these

dense columns are omitted from the matrix the number of non-zeros in

(symbolic) R drops to 4525, indicating that a two- or three-fold improve-

ment may be possible. However, there must clearly be a point at which the

extra work in the updating approach begins to outweigh the savings in

sparsity of . Note that the simplex method had no particular difficulty

with this problem.

The number of iterations appears to grow quite slowly with model

size. Karmarkar (Lii has claimed that the number of icerations should be

O(log n). While we would not make so formal a claim, these results by no

means contradict it.
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An encouraging sign is the relative sparseness of i (ezcept for

problem ISRAEL). The number of non-zeros is generally only 2 or 3 times

the number of non-zeros in the factors of the optimal basis. Given the

vulnerability of Qi decomposition to fill-in, this speaks well of the

aintmum degree ordering. Since the method behaved well in the case of

block angular A (as should be expected) It suggests that nested dissec-

tion [41, or incomplete nested dissection might also be worth investigat-

ing.

The relative sparsity of the resulting R must not, however, be con-

fused with the amount of work required to obtain it via QR decomposition

of B . Theoretical considerations, and our numerical results, indicate

that this can grow drastically with n, even using a close to "state of the

art' direct method (see (51 for later developments).

11. Finding "Exact" Otimu Data

In practice, one must ask how a usable optimum basic feasible solution

to the LP (and its dual) should be extracted when the projective method is

deemed to have converged. One might hope to use the projective method to

"front-end" the simplex method. As it happens, many MP systems contain a

procedure quite suitable in principle for this task. In all descendents of

MPS/360 (including MPSIIZ and MPSX/370) this is known as the BASIC proced-

ure. Senichou at l. give a general description of this method in section

2.7 of [11 (see also (9,121). Essentially, BASIC accepts a non-basic solu-

tion to a LP and transforms it into a basic solution whose objective (phase

I or 11) value is at least as good. This may be followed by the simplex

method to attain optimality.

20



I
Experiments ich the first (fixed a, Bouseholder) version of the code

indicated that the projective method could provide a reasonably good start-

ing solution, via BASIC, even with loose phase 11 convergence criteria.

Thus Table 8 gives data on the BASIC and simplex steps required to optimize

SHAE2B when the projective method is stopped early and at termination. It

is noticeable that feasibility in the projective method deteriorates toward

the optimum, and early termination provides a satisfactory starting solu-

tion for BASIC. For larger problems, and with a longer step length (fewer

iterations) this deterioration is more marked, and it proved difficult to

get good starting solutions for BASIC. Indeed BASIC and subsequent simplex

iterations were sometimes at many as those required to solve the problem

without the projective method as a "front-and." This suggests that an

additional iteration (or more) should be carried out at "convergence' to

en.force feasibility, or that perhaps some "composite" steps should be per-

formed, which attempt to restore feasibility as the opti-u is approached.

This has not been attempted in this series of experiments.

12. Conclusion

Following an experimental trail beginning with (10], we have been able

to implement a version of the projective method which solves realistic LP

models in respectable, in not really competitive, times. This is not to

say that further improvements are not possible. Farmarkar has hinted (II1

that Bell. Labs are experimenting with the use of incomplete Choleski

factorization of BBT  to precondition a conjugate gradient method (71 for

solving the least squares problems at the core of this method. This

promises to lead to some improvement over the direct QR methods to which

MA



these experiments have been confind. An even more promising approach is

some preconditioned form of the LSQR algoritbm [141.

Even though more sophisticated schemes for solving sparse least

squares problem may lead to markedly improved performance, it is diffiult

to see how they can lead to 50 co I improvements over the sImplax method

except in very special cases. As it happens, the model for which this

claim was made is reported to be a amlticommodity flow problem [111, which

Is block-angular and has an otherwise remarkably "friendly" macrix.

Experience shows that 1t is not difficult to beac MPSX/370 (the chosen

yardstick) by a wide margin on embedded network models (of which the multi-

commodity problem is a special case). We have reported results [181 for a

model with about 5000 netvork rows and 700 "hard" row where exploitation

of the network simplex method in MPS1I enabled us to solve it in about 5

minutes of 13M 3033 time, when MPSX/370 - used naively - had failed co

terminate in over an hour. Other practitioners were able to tie a differ-

enc network optimizer in with MPSX/370 and solve the model in about 11

minutes.

Finally, our observations may be summarized as follows:

(1) The number of iterations required by the projective method does

indeed grow slowly with model size.

(2) The work per iteration is substantial, and limited by the technol-

ogy for solving sparse least squares problems [8].

(3) 7ast improvements in speed over the simplax mechod only seem pos-

sible for special classes of problems, and these may be problems

for which greatly improved simplex technology is already avail-

able.
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Nam Consctrains Slacks Colus Non-Zeros OPCIMuM

9EDIUT 3 3 4 15 11.0 16.0

FEEDHIX 4 3 3 16 5.2857 16.0

G420 20 0 44 108 760.179 162

STD23 22 12 23 103 -45.53024 163

A RO 27 19 32 110 -494.75293 163

ADLITTLE 56 41 97 461 225494.94 163

SHAR23 96 83 79 801 -415.73224 163

ISRAEL 174 174 142 2274 896644.8 164

3ANDY 220 54 249 2256 1518.51 164

E226 223 190 282 2876 -18.7519 163

- ANDM 305 0 472 2612 158.628 164

Table 1. Test Problem Statiscics
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I

am .Crashed" Cols. Simplex Its. Eta Ioa-Zeros Time (Secs.)

=aT 2 1 6 0.58

FEEDMIX 1 3 14 0.59

GNET20 19 20 69 0.72

STD23 10 6 72 0.52

AFTRO 18 4 52 0.53

ADLITTLE 18 80 266 1.02

SHABE23 13 84 558 1.06

ISRAEL 1 166 1480 2.35

BRANDY 85 168 1467 2.66

E226 50 350 1490 3.95

BANDM 114 253 2385 3.51

Table 2. MPSII/JWIZD Solunion Results
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Iteracloae co Optimality

CcSTD23 AFtRD

0.25 165 239

0.5 82 118

0.9 44 64

Table 3. Senitivity to (F-t ed) cc
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ENCLOSURE D

"ON STEEPEST ASCENT WITH EQUALITY CONSTRAINTS"

J. M. Danskin

incomplete paper, 1986



ON STEEPEST ASCENT WITH EQUALITY CONSTRAINTS

by

John M. Danskin (Arlington Virginia)

A13STR ACT

The paper gives in algorithm for finding steepest

ascent of a !inear tor-n in R P  sibject to q constraints

in at most q - I sleps. It requires the storage of a q < q

dense matrix. There is an application to linear programming.



§ 1. Introduction

Our problem is to na irnize 2" y subject to the

constraints

IY I (t.t1)

and

0 . j .. 1.2)J

Here 2 , y, and the b. are in , 0, and I is a .inite
J

nonempty set of indices. We denote by the set of v - R p

satisfying U. 1)-(. 2). We w4.1 also call such a / 'adriss'ble".

Our method in the general cage is lo set up a 'inea-

manitold : .n R P and then to tind the point c - closesl to

the origin.

We deal in 5 2 w:th a trivial exceptional case. In

3 we construct he linear manitold ; and explan the s .gniticance

of c. In § 4 we show huw to tind c in tinitely :r a-," s-eps. In



2

S5 ve give the easy estimate for computation time. In 546-9

we note an apptication to linear programming. In § 10 we

recall Leinke's closest-point principle [31 and the connection

of our method with it.

1 2. The excetional case

We denote by J 0 the set of j - J for which 2 , = 0

and write I = j . j The exceptiona! case is the case JO j

all the b. are orthogonal to in that case the vector3

7 '~ 2~(2.1)

satisties 'he conditions (.1) and (. 2), and z ,

For any unit V' IE RP whatever. we have <.v = .v' _

with equality holding only if ' : v . Hence uniquely solves 'he

problem (Q. )-Q. 2), and the ma,&inurn - I:ii

M



3

S3 .The Iftne rat_ caic

Now r" is not empty. Suppose tirst that &!so 1. s

not empty. The vectors .o tar j E J now gene rate a cone

BO in Rp . Using the Grai-n-Schmidt orthogonalization process.

we construct an orthogonal basis fek k E K tot B Put

jk k k 3

k K

Put

We wvill suppose! troh no\v .)n tha' ha q elernents. Denote

bv 3he hype rplane in R q given by

z. I. 3.3

j E t

The linear manifold W is 'he image of :n pP given by the

mapping

x 7 - zvc- z -3 .3.4)

i Jj -- J

.. . .. . ... .. . . .. .. .. .. ... . . .. .al II,. . .. .. ... . . . .. .. . . M L A-
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We note three cardinal properties of First

[ I
x = t for al x 4. (3.5)

This follows from (3.2) and (3. 4). Second,

x. ' = 0 :or !1 x -- e ikri ' E7 .(3.

It s.ffices ,o prove that ' 0 tor .he b'. ot (3. 1) and
3 J

any admissible v' . But this follov. becati-e any idmissible

v' is by detinition norm.a, to the . tor i -: wh-ch takes

care or the tirs 'e-r. n "e -ight sde ,at '3. i. As -o the

second it is by ipfinilion -r'a " he tor j 0

hence normal to B ani hon-a no-7 a' *o ea-h e!ement

e k ot the orthogonal bass. The -h.-d p -Jpe-'y i.stat

1C 0 'o-'I x Z a.r , 3.

This ;s so because a!I the 1'- of 3. 1) are , r"og )na'- to B0

Now let c be the point on Z :L.ss' to the origin. Then

has relative to c the tollowing tourth, obvious P-operty:

c . (x- c) = 0 torill (3. 9)
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Now put

h = -c/c Z  (3. 01

It may be that h 0 . Then. since c c Z matisties (3. 6).

: y' = 0 tor all admissible y' and there is no direction ot

constrained ascent at all.

Otherwise h-- 0 . Then put

, = hi , y h/k. (3. 10)

Then (1.1) is satisfied. As 'o the constraints in (Q. 2) with j J

. : 0 by the detinition or J0  and 0. 0 ')y (3.7)J J

As -: the constraints in (1. 2) with j J . we have

"- J /c 2  
- 1 0 3. 11)

by (3. 5) and (3.8) , so that, by the definition 13. 2)

b . h 0 . j E 3. 12)

But since the ek In (3. 1) are orthogina! to both - and c (3. 12)

, ,, , .,i ,,,,,,,,,..,. -a • MA:



implies that

b h : 0 , j E J (3. 13)

Hence all the conditions L. 2) are satisfied, and y E

Now suppose y' is iny admissible vector. Then c. =

by (3. 6), so that

a. v' : ( - c/c 2 ). y' , . (3.14)

Hence v yields 'he unique rnaximum over - and that rnax:rrurn

is \

The case in which J0 i3 empty is sornewhat simpler.

The subt racted projections in (3. i are now go)ne. , = tor I)4

j z J= J. and the resf of the construction Roes "h-oagh ag before.

We now show how -o rind c., by an ite -ion v f-h at

most Min [p, q -[ ro.'es.

I
I
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§4. Location ot the coses2tnt c

In what follows we suppose that the number q ot

elements in J is at least 3, the cases q=1, 2 being obviously

trivial. And we assume that p > 2 .

The first basic element in our algorithm is steepest

descent in We recall what this is. For z E 8 put

p

Q(z) r Z . (4.1)

i l j C I

This is 'he distance-squared trom. the point x -Z given by (3.41

to the o-igin in RP  Q has the partials

Q(z) 2 i (4. 2z

Form the direction numbers

gz. x.(x - xJ) , j (4.31

in wh;.ch x is the "barycenter"
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Lx x (4. 4
q

jEJ

It the gz. are all zero, x is already the closest point c

Otherwise the direction number vector gz indicates the direction

of steepest descent in a , and the distance-squared is ;n tact

strictly decreasing in that direction.

The second basic element in our algorithm is based

on a simple geometric observation, as follows. Suppose that.

' is any line lying in , Then the noint x closest to the origin

on 1. is also the point closest to c on that line. Hence both the

origin and the closest point c lie in the plane -, normal to t

at x . With this 'n mind, we Arill in our algorithm restrict

the subsequent search to - .

The algorithm can be started anywhere. We s art it

0, 0 =1 jat the point z with z. l/q . j I . The IMage it zJ

ander (3.4) is )C If gz = 0 x c and w are through.

Otherwise denote by gx the image ot gz ander (3.4) . Since

gz corresponds to a direction ot strict descent, then also g)c 9

We normalize gx to a ,init direction vector gx Now p-i; a

line t through x in the direction gx Let x# be the point

1:) The # sign distinguishes 'his point trom the vertex

x defined at (3.2) .



9

on 1, closest to the origin. Denote by the plane normal to

t' Iand hertfore to gx at xI . From the construction, x#

has a naturtl inverse in i >nder (3.4) We denote that inverse

by z

Now s-ippose -hat I < n < Min "p, - l , and that we

have arrived at a point zn  ani corresponding point x n E

under (3. 4) . Suppose that wo have constructed directions
0 n-I

gx gx , each normal to all those preceding it, and
.0 -n 0 .. gx -

planes ., .... ,, normal respectively to the gx0 ... -

and all containing c Finally, we suppose that x#n lies In

all those planes.

Nov -, ngtruct the direction nlr-nbe-'s -z.

from (4. 3) with x replaced by ,n. If these are all zero,

x# n = c and we -re finished. Otherw>se, gz corresponds 'o

a direction of strict decrease. Theretor." its rnae gX inkier

(3.4) is aso nonzero, and corresponds 'o a i rec,ion -f

strict decrease on Now ,, -fieed to pr.-e a -echnical point.

Denote by S the space spanned -y the vec-ors -x ..... gx

Introduce into S a cs.ordinate ststem, wvth origin 3 at x a-d

with ax e 9y .... ,yn parallel to the g - Now..... axg, )Y ..... I, - 1

'V e any unit vector in S with components n...... along

those axes. Consider the ray t issuing from x n in the



to

$I
4

direction of u , with s mleas-iring the distance from x n

Now 'he vectors gz ,... 
g x  are orthogonal not only to

one another but also to the vectors , n -_ and c, whizh a'e

themselves orthogonal. Hence the distance-squared to the

origin from the point on i corresponding to s ;s

D 2  (s) = c + (Xjn c ) 2  2 r 2 +2- L

Ia n

- (xjn)2  4 s' (4.5)

Hence the directional derivative of the distance -squared in the

directionjj , at x# n , is zer3. This is the technical point

we needed.

Since the vector gx defined above is ionzer,) and

corresponds to a direction ot strict decrease for 'he distance-

sq' t red . it does not lie in S We now P.I'

(gx gx - (gx gx gx ... - 'gx,.x )gx (4.

Since gx does not lie in S. (gxl' 0

We now normalize (gx)' to a nit direction vector

gxn and pass a line tn through xi n in the direction gx n

,,I ... MA



Denote by xln+l the point on 6n4. closest to the origin

Denote by . + the plane normal to tn+l (and therefore to gxC

at ,n+ Let z E - + be the 'natural inverse" of x#n+

We aee that all the induction hypotheses made a, the

beginning of this general step with n , I are fulfilled. We

assumed that all the planes .7 contained c ow

does as well, by its construction And, since x#n layi jn

1 -_n ntl
all the .... ,.. and the direction gx" of , is orthogonal-

to all the normals g 0......gx 1 "1 to those planes, then a!so

n lies in all the _I . And it lies in - by the

definition of n+l So we are ready to proceed to the next

s fep.

The dimen-4ion of e cannot exceed q-1 5beca,.ise there

we.-e only q-! vectors, XC - x ..... X - X in the original

basis. And :t cannot ex'eed p , because , :s -elded in R P

Hence put

r - Min p. q-l ( .4. 7)

The di nen.4'on of ? then does not exceed r , Since w? d one

element to the orthonornal basis gz 0
,... } on each move, the

number :f moves cannot exceed r , and the closest point c will

be reached exac::ly on the last. move.
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